

# Potential capacity of laccases produced by Phlebia brevispora BAFC 633 in the degradation of chlorpyrifos

Ayala Schimpf, A. (1)(2); Rodríguez, M. D. (1)(2); Fonseca, M. I. (1)(2); Villalba, L. L. (1); Zapata, P. D. (1)(2)

(1) Universidad Nacional de Misiones. Facultad de Ciencias Exactas, Químicas y Naturales. Instituto de Biotecnología de Misiones "Dra. María Ebe Reca "(INBIOMIS). Laboratorio de Biotecnología Molecular (BIOTECMOL). Misiones, Argentina. (2) CONICET. Buenos Aires, Argentina.

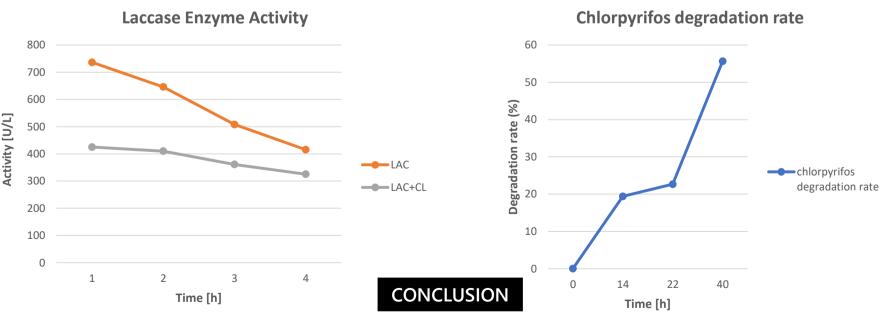
danielarodriquez@fceqyn.unam.edu.ar

## INTRODUCTION

Chlorpyrifos is a pesticide that, applied in significant quantities, produces a negative impact on environmental quality. The monitoring of this pollutant is becoming a mandatory parameter to assess the performance of agricultural practices. In this sense, it has been shown that the ligninolytic enzymes produced by white rot fungi have the ability to degrade / mineralize toxic substances; both structurally diverse xenobiotic and persistent pollutants in the environment, as well as toxic compounds of a phenolic nature and low molecular weight substances. Within these enzymes, laccases have a predominant role; these belong to the protein family of multi-copper oxidases. Although its catalytic action consists of the oxidation of p-diphenols in the presence of oxygen, the specificity of the substrate that can be oxidized is quite wide and varies with the source of the enzyme. This non-specificity character allows it to have important biotechnological applications.

### OBJECTIVE

The objective of the work was to evaluate the potential capacity of the laccases produced by the white rot fungus

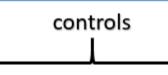

Phlebia brevispora BAFC 633 to degrade the pesticide chlorpyrifos.

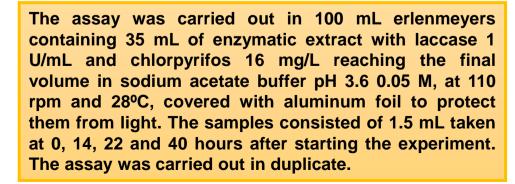


**METHODOLOGY** 



The initial laccase activity of the control corresponding to the enzymatic extract at the beginning of the assay (t = 0) was 736 U/L ( $\sigma$  175), decreasing during the subsequent times until reaching 415 U L ( $\sigma$  6) at 40 h. The activity of the extract in the presence of chlorpyrifos remained constant during the different times with an average value of 381 U/L ( $\sigma$  28). The degradation rate obtained in the experimental treatments of the pesticide with enzymatic extract was 19.4% at 14 h, 22.66% at 22 h and a maximum of 55.65% at 40 h of the assay corresponding to 7.12 mg/L of chlorpyrifos at the end of the assay.





From the results obtained, it can be seen that *P. brevispora BAFC* 633 has a promising degradation capacity of the pesticide chlorpyrifos, a characteristic that could be used in specific biotechnological applications such as its optimization in the use as a specific biosensor for this contaminant.

P. brevispora was activated in MEA medium (12.7 g/L malt extract and 20 g/L agar) in a Petri dish for 6 days at 28°C. The enzymatic production was carried out under submerged fermentation in 4 erlenmeyers of 250 mL: To obtain the inoculum, three blocks (Ø 5 mm) of young mycelium were cut and cultivated in ME medium (12.7 g/L of malt extract and 5 g/L of soluble corn extract) with the addition of sulfate of 0.5 mM copper for 10 days at 28°C.

Laccase activity was carried out using the kinetic technique with 2,6 dimethoxyphenol (DMP) 5 mM as substrate in 0.1 mM sodium acetate buffer at pH 3.6. The change in absorbance was monitored at 469 nm in a spectrophotometer.







Lac +Chlorpyrifos

LAC+ Buffer Chlorpyrifos+ Buffer

**AI-3** 

### **RESULTS AND DISCUSSION**