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Abstract. A dynamic study of timber footbridges with uncertain mechanical properties considering
the Human Structure Interaction (HSI) induced by the pedestrians is presented in this paper. These
structural systems made of timber are increasingly employed due to the high stiffness/weight ratio that
wood exhibits in relation to others structural materials. More, the development and implementation of
laminated beams permits larger spans. These features can lead to lightweight structural systems in which
the acceleration levels can exceed the human comfort limits. The sources of uncertainty of this structural
model are the timber mechanical and physical properties, Modulus of Elasticity (MOE) and mass density.
Also, the geometrical design of the boards that compose the laminated timber beams supporting the floor
involves variability in the distances between finger joints. Probability Density Functions (PDFs) of
the timber properties are formulated from the Principle of Maximum Entropy (PME). The finger joints
distance generates the lengthwise variability of the MOE and mass density functions in each board of
the laminated beams. The influence of these stochastic variables in the structural response on a free
vibration problem that includes the HSI induced by the human walking is assessed. Pedestrians arrive
to the footbridge under a Poisson distribution and the arrival velocity is such that a medium/low transit
density is achieved in accordance with the footbridge dimension. Stochastic properties of the HSI model
are introduced through their PDFs. Changes in the natural frequencies and damping of the structure
induced by the HSI are numerically obtained through the Finite Element Method (FEM) and Monte
Carlo Simulations (MCS). These modifications are evaluated in relation to the footbridge occupancy
at each instant. The present stochastic model contributes to obtain a more realistic description of the
response of this type of structures.



1 INTRODUCTION

Footbridges are one of the most common timber structures. The development and implemen-
tation of laminated beams and the high stiffness/weight ratio of this material in comparison to
other construction materials allow the covering of rather long spans. In this work, the complete
structure is made of Argentinian Eucalyptus grandis, one of the most important renewable
species cultivated in Argentina. This specie is one of those accepted for structural use by the
Argentinean Standard of Timber Structures CIRSOC 601. A method of visual strength grading
of sawn pieces of these species has been developed by Piter (2003).

Structural timber is characterized by a considerable variability of its mechanical properties
within and among pieces. Then, a stochastic approach becomes necessary in order to attain a
more realistic structural model. The stochastic approaches are derived from the probabilistic
theories of random variables and processes. A probabilistic model of timber structures where
the Modulus of Elasticity (MOE) is represented as a random variable with a lognormal PDF and
the mass density through a random variable with normal distribution, both assuming a homo-
geneous value within a structural element is presented in Köhler et al. (2007). Also, in Kandler
and Füssl (2017) a probabilistic model for Glued Laminated Timber (GLT) is proposed using
a random process model for the stiffness distribution within each lamination. Brandner and
Schickhofer (2015) use probabilistic models for the MOE and the shear modulus considering
serial and parallel systems to represent timber elements. The stochastic modeling of Argen-
tinean Eucalyptus grandis timber beams is reported by García et al. (2016) and García and
Rosales (2017). In these works, the MOE and the mass density are modeled through a gamma
random variable.

Timber footbridges must satisfy strength and serviceability requirements. Generally, due to
their low weight, the serviceability requirements in terms of peak accelerations constitute the
most restrictive condition in their design. An extensive literature review and state of the art
report of the dynamic behavior of footbridges was presented in Živanović et al. (2005). Among
other topics, the loads models, standards requirements and studies of the walk of people and
crowds are reported. The analysis of the unrestricted pedestrian traffic over footbridges with
the consideration of Poisson arrival process (Piccardo and Tubino, 2009) and the randomness
of the human walking through stochastic load models can be found in several works (Živanović
et al., 2010; Živanović, 2012). There exists a great number of uncertain parameters involved in
the human walking, which are best represented in a probabilistic framework. A recent approach
include the effect of the Human Structure Interaction (HSI) (Venuti et al., 2016; Caprani and
Ahmadi, 2016). The HSI model introduce the pedestrian stiffness, mass and damping to the
structural model. Then, the coupled system change its dynamical properties.

In this work a dynamic study of a timber footbridge (García et al., 2017) with uncertain me-
chanical properties considering the HSI induced by the pedestrians is presented. The sources
of uncertainty of this structural model are the timber mechanical and physical properties, MOE
and mass density. Also, the geometrical design of the boards that compose the laminated timber
beams supporting the floor involves variability in the distances between finger joints. Probabil-
ity Density Functions (PDFs) of the timber properties are formulated from the PME. The finger
joints distance generates the lengthwise variability of the MOE and mass density functions in
each board of the laminated beams. The influence of these stochastic variables in the structural
response on a free vibration problem that includes the HSI induced by the human walking is
assessed. Pedestrians arrive to the footbridge under a Poisson distribution and the arrival ve-
locity is such that a medium/low transit density is achieved in accordance with the footbridge



dimension. Stochastic properties of the HSI model are introduced through their PDFs. Changes
in the natural frequencies and damping of the structure induced by the HSI are numerically ob-
tained through the Finite Element Method (FEM) and Monte Carlo Simulations (MCS). These
modifications are evaluated in relation to the footbridge occupancy at each instant. The present
stochastic model contributes to obtain a more realistic description of the response of this type
of structures.

2 FOOTBRIDGE DESCRIPTION

The footbridge (García et al., 2017) is composed of three longitudinal, simply supported,
laminated beams with a length of 13.2 m and a separation of 0.6 m in the transversal direction
of the structure, five transversal laminated beams with a separation of 3.3 m in the longitudinal
direction of the structure and a deck of timber boards. The width of the laminated beams and
the timber boards of the deck is fixed in 0.15 m, and the height of each lamina of the beams and
of the timber boards, in 0.0375 m. The number of layers of the beams is considered between 8
and 16; laminated beams with 0.3 m and 0.6 m of height, respectively.

3 STRUCTURAL TIMBER

3.1 Elastic model

The material model is derived from the transversal isotropic model with two main directions
the longitudinal also named parallel to the main fibres directionEL = Ex, and the perpendicular
direction that includes the radial and tangential material direction ER = ET = Eyz. The basic
stochastic properties proposed in this work are the longitudinal MOE (Ex) and the mass density
(ρ). In what follows, these random variables will be represented by Ex and P, respectively. For
a transversally isotropic material, the elastic and shear modulus are defined as Ezy = Ex/15,
Gxy = Gxz = Ex/16. Meanwhile, in a general form, the poison coefficients for hardwood are
νRT = 0.67, νLT = 0.46 and νLR = 0.39 (Argüelles Álvarez R, 2013). For a transversally
isotropic formulation, νzy = νRT = 0.67, νxzy = (νLT + νLR)/2 and Gzy = Ezy/2(1 + νzy).

3.2 MOE and mass density stochastic representation

If a stochastic approach is applied to this problem, first a Probability Density Function (PDF)
should be chosen for the random variable. A statistical concept of entropy was introduced by
Shannon (1948) and its maximization, by Jaynes (1957) . The Principle of Maximum Entropy
(PME) states that, subjected to known constrains, the PDF which best represents the current
state of knowledge is the one with largest entropy. It is possible to demonstrate that the appli-
cation of the principle under the constraints of positiveness and bounded second moment, leads
to a gamma PDF. The PME conduces to this PDF due to the fact that the domain of both the
MOE and the mass density is real and positive. To find the parameters of the marginal PDF of
the MOE and mass density, experimental data presented by Piter (2003) were employed. The
parameters of the gamma marginal PDFs of the MOE and density are estimated with the help
of the Maximum Likelihood Method (MLM). Then, the Kolmogorov-Smirnov (K-S) and the
Andersson-Darling (A-D) test of fit are used, (Benjamin and Cornell, 1970). The PDF that best
fits with the experimental values of the MOE is the gamma, in coincidence with the PME result.
The test of fit was also carried out with the lognormal, normal and truncated normal PDFs. On
the other hand, for the density, the four PDFs fulfill the critical value, but the lognormal and
gamma fit best with respect to the experimental values. Here, following the PME and due to the
small difference found among the lognormal and gamma, the last PDF is adopted to represent



the mass density uncertainty. The gamma marginal CDF of the MOE and mass density writes:

F (x | a, b) =
1

baΓ(a)

∫ x

0

ta−1e−
t
bdt (1)

where a and b denote the shape and scale parameters, respectively. For the MOE, the parameters
are a = 34.582 and b= 0.402 with a mean value of the MOE equal to 13.902 GPa and a standard
deviation of 1.498 GPa. In the case of the mass density, a = 72.179 and b = 7.659, the mean
value of the mass density equal to 552.819 kg/m3 and a standard deviation of 65.069 kg/m3.

3.3 Laminated beams

Laminated beams are composed of several layers each formed by the union of boards with
different mechanical properties. The upper and lower faces of the boards are glued to the supe-
rior and inferior continuous board. Previously, the boards of each lamina are assembled together
by finger joints unions. Distances between two finger joints obtained from a visual survey of
laminated beams were employed in order to simulate the different boards that conform a lami-
nated beam. With the results of the survey, the Probability Mass Function (PMF) of the distance
between fingers joints was constructed. The mean value and standard deviation of the distance
between joints are 0.865 m and 0.247 m, respectively. According to the Argentinean standard
IRAM:9662-2 (2006) , each board of the laminated beams comes from a specific strength class.
Within this quality class, the properties vary stochastically. The finger joint union is shown in
Fig. 1(a) and an illustration of the distances between consecutive unions at each layer obtained
from the PMF, in Fig. 1(b).

(a) Finger joints, IRAM:9660-2. (b) Finger joint unions distribution according to the
PMF.

Figure 1: Laminated beams design.

4 FINITE ELEMENT DISCRETIZATION

The natural frequencies and modes of the footbridge are obtained solving the Eq. (2) below:

[K− V 2
nM]Φn = 0 (2)

where K and M are the n x n positive-definite global stiffness and mass matrices, respectively.
The equation of motion was discretized for laminated beams using Timoshenko beam elements
with two nodes and three degrees of freedoms per node. Translational, rotational and torsional
degrees of freedom, were employed (Reddy, 1993). The torsional stiffness was obtained from
Swanson (1998). For the deck of the footbridge, rectangular bilinear plate elements with four
nodes and three degrees of freedom per node (Reddy, 1993) were employed.



5 COUPLED SYSTEM HUMAN STRUCTURE

5.1 Beam model of the footbridge

After the modal study of the whole structure a reduction of the same was carried out in order
to represent the footbridge as an equivalent simply supported beam for the application of the
Human Structure Interaction (HSI) model. The properties of the equivalent beam model of the
footbridge are depicted in Table 1.

8 layers 12 layers 16 layers
Mean SD Mean SD Mean SD

F1 Hz 3.22 0.02 5.00 0.03 6.77 0.03
EIb Nm2 14.17 x106 0.22 x106 47.45 x106 0.58 x106 111 x106 1.19 x106

m kg/m 110.82 0.58 153.80 0.70 196.78 0.78

Table 1: Properties of the equivalent beam model of the footbridge.

The Damping of the footbridge Cb was modelled through a truncated exponential PDF with
mean value equal to 3% and a range between 1% and 7% proportional to the stiffness and mass.

5.2 Spring Mass Damper (SMD) model for the Human Structure Interaction (HSI)

In this model, the pedestrian is modelled as a single degree of freedom system with damping
cp, mass mp and stiffness kp (Caprani and Ahmadi, 2016). Then, the equation of motion for the
pedestrian is given by:

mpÿ + cp (ẏ − ẇ) + kp (y − w) = 0 (3)

where y is the displacement of the human mass from the equilibrium position an w is the beam
deflection. The equation of motion of the beam is the following:

mbẅ + cbẇ + kbw = G(t) (4)

where mb, cb and kb are the mass, damping and stiffness of the beam. For the Finite Element
discretization the pedestrian travels with constant velocity v. The interaction force between the
SMD system and the beam is:

f (x, t) = G (t) + cp [ẏ − ẇ] + kp [y − w] (5)

Using the shape function for the displacement of the beam:

ẇ (x, t) = vNxd + Nḋ (6)

we obtain:

f (x, t) = G (t) + cpẏ + kpy − cpvNxd− cpNḋ− kpNd (7)

The equation of motion of the pedestrian becomes:

mpÿ + cpẏ + kpy − cpNḋ− (cpvNx + kpN)d = 0 (8)



and similarly, the equation of motion for the beam:

Mbd̈ +
(
Cb + cpN

TN
)
ḋ +

(
Kb + cpvN

TNx + kpN
TN
)
d− cpNTẏ − kpNTy = NTG(t)

(9)
These two coupled equations can be expressed as:[

Mb 0Nx1

01xN mp

]{
d̈

ÿ

}
+

[
Cb + cpN

TN −cpNT

cpN cp

]{
ḋ

ẏ

}
+ (10)[

Kb + cpvN
TNx + kpN

TN −kpNT

−cpvNx − kpN kp

]{
d

y

}
=

{
NTG(t)

0

}
and then:

Mü + Cu̇ + Ku = P (11)

Whit the application of the principle of effect superposition, the formulation for a simple
pedestrian can be extended to multiple pedestrian transit (Caprani and Ahmadi, 2016). When the

Figure 2: Spring, Mass, Damper (SMD) for the Human Structure Interaction (HSI) (Caprani and Ahmadi, 2016).

pedestrian crosses the footbridge, the coupled system (human-structure) changes its dynamic
properties. For the modal analysis of the system the state space method is employed in order to
obtain the modal properties. The system equation in the state space can be written as:

v̇ =

[
0 I

−M−1K −M−1C

]{
d

ḋ

}
+

{
0

−M−1P(t)

}
(12)

in which I is the identity matrix and P(t) is the force vector. Solving the eigenvalue problem
the modal properties are obtained:

Aφ = λφ (13)

where λ is the complex eigenvalue and φ is the corresponding eigenvector. The natural fre-
quency fi and the damping ratio ξi are obtained from:

fi =
|λi|
2π

; ξi =
|Re (λi)|
|λi|

(14)

5.3 Stochastic properties of the SMD model

The stochastic variability of the pedestrian properties in the HSI model (mp, cp, and kp) have
been considered following Venuti et al. (2016), (Table 2):



Pedestrian mass (mp) Pedestrian damping (cp) Pedestrian stiffness (kp)
kg Ns/m N/m

PDF Normal, Mean=75kg, SD=15 kg Uniform [0, 400] Uniform [2000, 13000]

Table 2: Probability Density Functions (PDF) of the pedestrian properties in the HSI model.

5.4 Transit of multiple pedestrians

In order to simulate the transit of multiple pedestrians, the arrival time is simulated through
a Poisson process. This distribution was experimentally confirmed in real footbridges in Mat-
sumoto (1978).The times between arrivals (Ai) have an exponential distribution of parameter
λ0, simulated as Ai = − (1/λ0) lnUi in which Ui are random values from an uniform distribu-
tion between [0, 1] (Rubinstein and Kroese, 1981). Then, the arrival times Ti = A1 + · · · + Ai

are simulated within the analysis time [0, T ] in which T is equal to 30 s and the mean arrival
velocity λ0 is equal to 0.2 pedestrians/s. The mean arrival velocity λ0 was adopted in order to
ensure a low pedestrians density according to the dimensions and the use of the footbridge ana-
lyzed in this study. A limit of low occupancy density is considered equal to 0.6 pedestrians /m2

FIB (2005). For this limit or lower values, the individuals are capable to walk freely keeping
their transit characteristics (step frequency and length).

6 NUMERICAL RESULTS

6.1 Single pedestrian

In Fig. 3, modifications in the first natural frequency and modal damping of the coupled
system Human-Structure regarding the initial footbridge modal properties when a single pedes-
trian cross the structure are shown. After a converge study a number of 5000 independent
Monte Carlo simulations was carried out. As can be viewed, the modification in the first modal
damping is higher than in the first frequency of the coupled system. When the stiffness of the
laminated beams increase, the change in the first natural frequency and in the damping decrease.
In the figures, the color pattern indicates the relative frequency of each percentage change. An
important modification in the modal damping is observed when the laminated beams of the
footbridge are composed of 8 layers. In Fig. 4 an approximation of the relation between the
initial footbridge modal damping Cb, the pedestrian damping Cp and the maximum value of
the modal damping of the coupled system registered for each one of the simulations is shown.
In the figures the color pattern indicates the maximum value of the coupled system damping
when the pedestrian walk along the footbridge. As can be observed in Fig. 4(a), for laminated
beams with 16 layers, the change in the damping is lower and can be approximated with a lin-
ear relation. Additionally, when the laminated beams are composed for 8 layers (Fig.4(b)), the
change in the damping is more important and also can be approximated with a linear relation.
For the figure, one can infer that the maximum differences between the initial footbridge modal
damping Cb and the maximum value of the modal damping of the coupled system in Fig. 3,
correspond to footbridges with low initial modal damping Cb.

6.2 Multiple pedestrian

In Fig. 5 the percentage differences between the initial modal damping of the footbridge and
the maximum modal damping of the coupled system in relation to the footbridge occupancy are
registered for the case of multiple pedestrian transit in 5000 simulations. In Fig. 5(a) for an
arrival velocity of 0.1 pedestrians/s, in Fig. 5(b) for an arrival velocity of 0.2 pedestrians/s and



(a) 8 layers. (b) 12 layers.

(c) 16 layers.

Figure 3: Variation in the first natural frequency and modal damping of the footbridge for different number of
layers in the laminated beams. Left plots: variation of the natural frequency. Right plots: variation of the modal
damping. Color pattern: results frequency.
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Figure 4: Approximation of the relation between the initial footbridge modal damping Cb, the pedestrian damping
Cp and the maximum value of the modal damping registered for each one of the simulations.

in Fig. 5(c) for an arrival velocity of 0.3 pedestrians/s. As can be seen the arrival velocity do not
modify the damping differences in a considerable way. Only a modification in the conditions
in which the percentage differences occurs related with the footbridge occupancy can be ap-
preciated. For each arrival velocity, the variation in the beam stiffness constitutes the principal
source of damping variation in the coupled system Human-Structure.

7 CONCLUSIONS

A stochastic study of the modal dynamic behaviour of a short span timber footbridge made
of Argentinean Eucalyptus grandis considering the Human Structure Interaction (HSI) was
presented. To the best knowledge of the authors’, this structural configuration is extensively
employed but not adequately studied in the literature. The stochastic analysis allows to extend
the range of the response starting from an equivalent beam model of the footbridge. When
the stiffness of the laminated beams increase the change in the first natural frequency and in



(a) λ=0.1 pedestrians/s.

(b) λ=0.2 pedestrians/s.

(c) λ=0.3 pedestrians/s.

Figure 5: Percentage differences in the modal damping. Multiple pedestrian transit.

the damping decrease. An important modification in the modal damping is observed when the
laminated beams of the footbridge are composed of 8 layers. The change in the damping is
more important and also can be approximated with a linear relation. As can be seen the arrival
velocity do not modify the damping differences in a considerable way. Only a modification in
the conditions in which the percentage differences occurs related with the footbridge occupancy
can be appreciated. For each arrival velocity, the variation in the beam stiffness constitutes the
principal source of damping variation in the coupled system Human-Structure. The present
stochastic model contributes to obtain a more realistic description of the response of this type
of structures.
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