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Abstract

The current paper seeks to approach, using a workflow, basics subjects of the bioinformatic field and also useful 
informations to consider during the development of in silico researches. Installation and general usage of multiple 
softwares related to different sections of the genome annotation process were also presented.  At last, an model 
organism, Staphylococcus aureus, was sequenced in two different softwares, SPAdes and IDBA-UD, seeking further 
comparison and evaluation of the process as a whole. The quality evaluation of the assemble was established by 
tests on QUAST, BUSCO and Augustus, supported by BLASTP. Results: QUAST evaluation returned genome coverage 
values above 98% in both test cases, pointing towards a trustworthy assemble for this organism. Via SPAdes were 
needed less computational resources, but, using IDBA-UD the sequences found were more contiguous. Results 
deriving from BUSCO showed only one expected gene difference. Some proteins and genes predicted by Augustus 
led to hits, sequences already studied in that organism, using the BLASTP program. 

Keywords: Bioinformatic; workflow; assemble; genome; computational tools.

Resumen

El presente trabajo trata sobre un enfoque en formato de flujo de trabajo de cuestiones básicas del área, así como 
información a tener en cuenta durante la elaboración de investigaciones in silico. Se centró en algunos programas 
de diferentes partes del proceso de ensamblaje genómico, proporcionando orientación sobre su instalación y uso. 
Finalmente, se secuenció un organismo modelo, Staphylococcus aureus, en dos softwares, SPAdes e IDBA-UD, 
para la comparación y evaluación cualitativa del resultado. La evaluación de la calidad de la secuenciación se 
estableció mediante pruebas en los programas QUAST, BUSCO y Augustus, con el apoyo de BLASTP. La evaluación 
a través de QUAST arrojó valores de integridad en relación con el genoma de referencia superiores al 98% para 
ambas pruebas, lo que indica un ensamblaje confiable para el organismo en cuestión. La herramienta SPAdes 
logró secuenciar con menor capacidad computacional, pero a través de IDBA-UD se obtuvieron secuencias más 
contiguas. Los resultados de BUSCO mostraron solo una diferencia genética esperada. Las proteínas y genes 
esperados obtenidos por Augustus provocaron aciertos a través de BLASTP, es decir, secuencias de proteínas ya 
estudiadas y descritas para el organismo.

Palabras clave: Bioinformática; workflow; ensamblaje; genoma; herramientas computacionales.

Resumo

O presente trabalho trata-se de uma abordagem em formato de workflow de questões base da área de 
bioinformática, assim como informações para se levar em consideração durante a elaboração de pesquisas in 
silico. Focou-se em alguns programas de diferentes partes do processo de montagem genômica, fornecendo 
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orientações acerca de sua instalação e uso. Por fim, sequenciou-se um organismo modelo, Staphylococcus aureus, 
em dois softwares, SPAdes e IDBA-UD, para fins de comparação e avaliação qualitativa do resultado. A avaliação da 
qualidade do sequenciamento foi estabelecida por testes nos programas QUAST, BUSCO e pelo Augustus, apoiado 
pelo BLASTP. a avaliação via QUAST retornou valores de completude em relação ao genoma referência acima de 
98% para ambos testes, indicando uma montagem confiável para o organismo em questão. Via SPAdes foi-se capaz 
de sequenciar com menor capacidade computacional, porém por intermédio do IDBA-UD obteve-se sequências 
mais contíguas. Os resultados advindos do BUSCO apresentaram apenas um gene esperado de diferença. As 
proteínas e genes esperados obtidos pelo Augustus suscitaram hits via BLASTP, ou seja, sequências proteicas já 
estudadas e descritas para o organismo.

Palavras-chave: Bioinformática; workflow; montagem; genoma; ferramentas computacionais.

Introduction

Bioinformatics is proving to be of great value for 
data manipulation in the field of biology. This area 
of knowledge encompasses all aspects related to the 
acquisition, processing, storage, distribution, analysis 
and interpretation of biological information. By unifying 
concepts and techniques from mathematics, statistics and 
computer science, it can lead to tools capable of extending 
the understanding of possible biological implications 
arising from genomic data [1].

Among the applications of bioinformatics, we find the 
sequencing and annotation of genomes, being the first 
responsible for providing the nucleotide composition of the 
genome of an organism. This technique is carried out by 
equipment from Illumina1, Ion Torrent2, Pacific Biosciences 
(PacBio)3 and Oxford Nanopore Technology (ONT)4, for 
example. This equipment allows the reading of text files 
containing DNA fragments called reads, which must be 
organised in order to represent the organism’s genome. 
This procedure is called genome assembly, the most 
common approach being de novo, in which the genome is 
reconstructed exclusively from the overlay information of 
the reads. The sequences resulting from genome assembly 
are called contigs. For prokaryotic organisms, genome 
assembly can be performed by considering another genome 
as a reference model to guide the mapping of reads or by 
rearranging the contigs resulting from previous assembly 
[2,3]. Finally, the contigs are organised to form scaffolds, 
which will be used to perform genome annotation. Some 

1- ILLUMINA. Illumina: sequencing and array-based solutions for gene-
tic research. Sequencing and array-based solutions for genetic research. 
Available in: <https://www.illumina.com/>. Accessed on: 01 jul. 2021.

2- THERMO FISHER SCIENTIFIC BR. Ion Torrent. Available in: <https://www.
thermofisher.com>. Accessed on: 01 jul. 2021.

3- PACIFIC BIOSCIENCES. PacBio: sequence with confidence. Sequence 
with confidence. Available in: <https://www.pacb.com>. Accessed on: 01 
jul. 2021.

4- OXFORD NANOPORE TECHNOLOGIES. Nanopore. Available in: <https://
nanoporetech.com/>. Accessed on: 01 jul. 2021.

examples of software used in this initial stage are: Velvet 
[4], SPAdes [5] and Trinity [6].

After sequencing, it is possible to obtain structural 
and functional information about the genome under 
investigation, as well as data that contribute to the 
evolutionary knowledge of organisms, innovations in 
diagnostic methods, new drugs, vaccines, possible means 
of prevention and more effective treatments against 
diseases or pests, and many other applications. Such 
information is obtained through annotation, which can be 
understood as a multilevel computational process involving 
nucleotides, proteins and processes [7].

In this context, for a project dedicated to genome 
assembly and annotation to develop successfully, it is 
necessary to initially define the application platform 
and the operating system to be used. After acquiring the 
equipment, translating the demands of a project into the 
specifications of a server (hardware) is fundamental to 
dimension the current needs. Depending on the chosen 
applications, it is important to carry out an analysis of 
the processing volume, memory usage and disk space 
consumption. For assembly, execution times and memory 
requirements increase with the amount of data. Therefore, 
there is a positive correlation between genome size and 
execution time and memory requirements [3]. For example, 
according to the company DNA STAR, which specialises 
in genomic sequencing, the organism Saccharomyces 
cerevisiae has a genome of approximately 15 MBases, 
thus requiring approximately 20 Gb of RAM, with 1 GB 
of RAM per MBase of genome length being recommended. 
These values can also be changed depending on the 
sequencer chosen and its mode of operation.

Genome assembly and annotation are purely 
computational procedures, usually performed by software 
without a graphical interface in a UNIX environment, 
which can be challenging for beginners in this environment. 
In addition, the results produced by one tool are not always 
in a format that can be used in the next tool in a workflow. 
In the literatura, it is possible to find articles that report 
the steps and procedures necessary for the execution of 
genomic assembly and annotation, and also discuss the 
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peculiarities involved for each type of organism. In this 
regard, Zhou et al. [8] present the appropriate tools for 
genome assembly according to the sequencing approach. 
Keith [9] presents a compilation of methodological aspects 
related to genomic sequencing, assembly, annotation, data 
management, protein analysis and phylogenetic analysis. In 
the same vein, Ekblom and Wolf [10] analyse the workflow 
of a genomics project, from experimental procedures in the 
laboratory to the resulting applications of genome projects. 
In addition, Del Ángel et al. [3] point out important aspects 
that need to be analysed at the different stages. However, 
no article addresses the computational-technical difficulties 
related to the software execution environment.

In this context, many researchers in the field of life are 
discouraged to perform purely in silico procedures, either 
by technical-computational aspects or by the beginning of 
Bioinformatics as a science in the country. Although the 
installation of the software seems a simple task, during the 
assembly and annotation project of the fungus Penicillium 
equinulattum, carried out by researchers from the University 
of Caxias do Sul, some peculiarities were noticed that are 
not described in the installation tutorials and that, despite 
having relatively simple solutions, require significant time 

to diagnose. Thus, this article addresses technical aspects 
related to the Information Technology Infrastructure for its 
application in genomic assembly and annotation projects by 
researchers in the field of life sciences.

Materials and Methods

The methodology consisted in the elaboration of an 
orientation workflow for the installation and configuration 
of a computer server dedicated to genomic assembly 
and annotation. In this regard, this section describes the 
software and hardware selection steps.

Genome Assembly and Annotation Tools

The choice of tools was based on the experience of 
the team involved in the P. echinulatum fungal assembly 
and annotation project, which includes researchers in the 
areas of Biology and Computer Science. In this sense, 
software or pipelines were sought to reduce computational 
difficulties, as shown in Table 1.

Table 1: Computational tools.

Tool Target Language Reference

FastQC
Performs quality control of raw data from high-
throughput sequencing pipelines.

Java
ANDREWS, Simon et al. FastQC: a quality control tool 
for high throughput sequence data. 2010. [11]

TrimGalore
Aims to automate the quality of the file containing the reads, 
with additional functionalities related to the quality control 
of the file containing the data to be sequenced.

Perl
KRUEGER, Felix. Trim galore. A wrapper tool around Cutadapt 
and FastQC to consistently apply quality and adapter 
trimming to FastQ files, v. 516, p. 517, 2015. [12]

KmerGenie
Practically and accurately analyses the best value of k to 
be used in sequencing, arriving at it using approximate 
abundance histograms over multiple possible values.

R e Python 
2.7 ou 
maior

CHIKHI, R.; MEDVEDEV, P. Informed and automated k-mer size 
selection for genome assembly. Bioinformatics, [S.L.], v. 30, n. 1, 
p. 31-37, 3 jun. 2013. Oxford University Press (OUP). [13]

SOAP-
denovo 2

Composed of six modules, this software works on correcting read 
errors, constructing de Bruijn graphs, joining contigs, mapping 
paired-end reads, constructing scaffolds, and filling spaces.

C e C++
LUO, Ruibang et al. SOAPdenovo2: an empirically improved memory-
efficient short-read de novo assembler. Gigascience, [S.L.], v. 1, 
n. 1, p. 1-6, dez. 2012. Oxford University Press (OUP). [14]

Abyss 2.0
The successor assembly program to Abyss, which works on assembling 
genomes across large datasets using Bloom filters. It uses less 
memory and has competitive results with other assembly software.

C++
JACKMAN, Shaun D. et al. ABySS 2.0: resource-efficient assembly of 
large genomes using a bloom filter. Genome Research, [S.L.], v. 27, n. 
5, p. 768-777, 23 fev. 2017. Cold Spring Harbor Laboratory. [15]

Velvet

A set of algorithms that act on genome assembly through 
Brujin graphs, eliminating errors and circumventing repeated 
sequences. It seeks greater efficiency in extremely short reads, 
from 25 to 50 base pairs, in the case of pairwise reads.

C
ZERBINO, Daniel R.. Using the Velvet de novo Assembler for 
Short‐Read Sequencing Technologies. Current Protocols In 
Bioinformatics, [S.L.], v. 31, n. 1, p. 1-13, set. 2010. Wiley. [4]

Spades
A multi-pipelined assembler that works on Brujin graphs, using kmers only 
in initial assembly, followed by graph-theoretic operations. Its main focus is 
genomic assembly with data obtained from single cells, such as bacteria.

Python
BANKEVICH, Anton et al. SPAdes: a new genome assembly algorithm 
and its applications to single-cell sequencing. Journal Of Computational 
Biology, [S.L.], v. 19, n. 5, p. 455-477, maio 2012. Mary Ann Liebert Inc. [5]

IDBA-UD y 
variantes

Successor to IDBA that seeks to assemble genomes with large 
differences prior to read coverage. It employs iteration of k values, 
being able to reconstruct longer contigs more accurately. It focuses on 
reference-free assemblies, while the IDBA-Hybrid version addresses 
cases where there are similar genomes as reference. In the case of 
transcriptomes, the use of the IDBA-Tran variant is recommended.

C++
PENG, Y. et al. IDBA-UD: a de novo assembler for single-cell and metagenomic 
sequencing data with highly uneven depth. Bioinformatics, [S.L.], v. 28, 
n. 11, p. 1420-1428, 11 abr. 2012. Oxford University Press (OUP). [16]

QUAST y 
variantes

Tool developed with the intention of evaluating and comparing genome 
assemblies by different platforms, with or without reference genome.

Python 
e Perl

MIKHEENKO, Alla; PRJIBELSKI, Andrey; SAVELIEV, Vladislav; 
ANTIPOV, Dmitry; GUREVICH, Alexey. Versatile genome assembly 
evaluation with QUAST-LG. Bioinformatics, [S.L.], v. 34, n. 13, p. 
142-150, 27 jun. 2018. Oxford University Press (OUP). [17]

BUSCO
Software that seeks to quantify evaluatively the assembly of genomes 
taking into account the number of genes presented. It uses a database 
composed of orthologous genes from six main phylogenetic clades.

Python
MANNI, Mosè et al. BUSCO update: novel and streamlined workflows along 
with broader and deeper phylogenetic coverage for scoring of eukaryotic, 
prokaryotic, and viral genomes. arXiv preprint arXiv:2106.11799, 2021. [18]

Trimmomatic
Flexible preprocessing tool that considers optimized read 
pairs for data obtained through Illumina NGS.

Java
BOLGER, Anthony M.; LOHSE, Marc; USADEL, Bjoern. Trimmomatic: a 
flexible trimmer for illumina sequence data. Bioinformatics, [S.L.], v. 30, 
n. 15, p. 2114-2120, 1 abr. 2014. Oxford University Press (OUP). [19]

Trinity

Package with three independent modules that again performs 
full transcriptome reconstruction. It is capable of acting 
on several samples from direct reads of RNA sequences, 
especially those where there is no reference genome.

C++, Java 
e Python

HAAS, Brian J et al. De novo transcript sequence reconstruction 
from RNA-seq using the Trinity platform for reference generation 
and analysis. Nature Protocols, [S.L.], v. 8, n. 8, p. 1494-1512, 11 
jul. 2013. Springer Science and Business Media LLC. [6]
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Hardware and operating system characteristics

For the development of the proposed configuration 
workflow, the hardware resources used were configured 
as follows:

• Processor: Intel® Xeon® CPU x5650 at 2.67 GHz 
x 12;
• Installed memory (RAM): 65.94 Gb;
• System type: 64-bit system, X64-based processor.
• Operating System: Ubuntu 20.04.2 LTS.
Among the operating systems, three stand out: MAC 

OS, Windows and Linux distributions, the latter being the 
most recommended for bioinformatics research purposes. 
Although less intuitive for users unaccustomed to open 
source systems, the variants present great flexibility and 
tools for practical purposes in the field. In addition, there 
are images and software developed for Linux that allow the 
automatic installation of programmes of interest or even 
help in the process, as is the case of Dugong and Unipro 
UGENE. There are many options for distribution, choosing 
Ubuntu in this article, because of the greater amount of 
information available on how it works and also because of 
the number of tools that support it.

Setting up the computing environment

The configuration of the computing environment 

involved the installation of the operating system, the 
configuration of the network environment, the firewall and 
the user account permissions. The chosen layout makes 
these steps clear and objective, without presenting major 
problems for the user. The greatest degree of difficulty is 
found in the use of the terminal, which is typical of Linux 
systems, but there is a wide range of manuals and guides 
on this in the virtual environment.

The next step must be the installation and configuration 
of the sequencing software, along with the necessary 
permissions to be able to operate fully. With these duly 
installed, it is possible to act on the management and 
processing of the memory dedicated to each one, finalising 
the configuration of the structure necessary to carry out 
the research related to the genome project. The software 
was chosen to cover the main steps of the sequencing 
process. FastQC [11], TrimGalore [12] and Kmergenie 
[13] were used for pre-processing. For assembly, SPAdes 
[5] and IDBA-UD [16] software were used to compare the 
difference between constant k-value and iterative k-value 
assemblies. Data evaluation was performed using Quast 
[17] and BUSCO [18] with reference genome. As for the 
annotation, only the initial part, referring to the structural 
annotation, was performed. The Augustus software [21], 
supported by the BLASTP tool [33], was used for this 
purpose. The datasets used are from the Staphylococcus 
aureus organism available on the SPAdes software 

Hisat2
A tool that aligns RNA and DNA sequences using a Ferragina 
Manzini index, mapping them to a population of the 
human genome or to a single reference genome.

C++, Python 
e Java

KIM, Daehwan et al. Graph-based genome alignment and genotyping 
with HISAT2 and HISAT-genotype. Nature Biotechnology, [S.L.], v. 37, n. 8, 
p. 907-915, ago. 2019. Springer Science and Business Media LLC. [20]

Augustus

Structural annotation software. Through a probabilistic model of a DNA 
sequence that has a gene structure, it defines the probable distribution 
in the given set, pointing out its coding regions. It uses different fonts, 
which can be provided by the user, contained in the program or external.

C++, Perl, 
Python

KELLER, Oliver; KOLLMAR, Martin; STANKE, Mario; WAACK, Stephan. 
A novel hybrid gene prediction method employing protein 
multiple sequence alignments. Bioinformatics, [S.L.], v. 27, n. 6, 
p. 757-763, 6 jan. 2011. Oxford University Press (OUP). [21]

GeneMark-
ET

An ab-initio algorithm that identifies and predicts genes capable of 
encoding proteins in eukaryotic genomes, with a focus on fungi. It 
aims to extend the performance of its predecessor, GeneMark-ES, by 
integrating the process of aligning sequential RNA reads into the self-
training process. It thus acquires greater accuracy in gene prediction.

LOMSADZE, Alexandre et al. Integration of mapped RNA-
Seq reads into automatic training of eukaryotic gene finding 
algorithm. Nucleic Acids Research, [S.L.], v. 42, n. 15, p. 119-
119, 2 jul. 2014. Oxford University Press (OUP). [22]

tRNAScan-SE
Software that identifies 99-100% of genes linked to RNA transport in 
DNA sequences, yielding less than one false positive per 15 Gb. Uses 
additional extensions to identify unusual carrier RNA homologues.

Perl
LOWE, Todd M.; EDDY, Sean R.. TRNAscan-SE: a program for improved 
detection of transfer rna genes in genomic sequence. Nucleic Acids Research, 
[S.L.], v. 25, n. 5, p. 955-964, 1 mar. 1997. Oxford University Press (OUP). [23]

InterproScan

Searches for proteins and amino acid sequences in a database 
called Interpro. Integrates predictive information about protein 
function, providing a broad view of the families to which the 
protein belongs and the domains and sites it contains.

Objective-C, 
Java

BLUM, Matthias et al. The InterPro protein families and domains 
database: 20 years on. Nucleic Acids Research, [S.L.], v. 49, n. 1, 
p. 344-354, 6 nov. 2020. Oxford University Press (OUP). [24]

EggNOG 5.0
Database covering the orthologous relationships and evolutionary 
history of genes, as well as annotations on features.

-

HUERTA-CEPAS, Jaime et al. EggNOG 5.0: a hierarchical, functionally 
and phylogenetically annotated orthology resource based on 5090 
organisms and 2502 viruses. Nucleic Acids Research, [S.L.], v. 47, n. 
1, p. 309-314, 12 nov. 2018. Oxford University Press (OUP). [25]

Phobius

Prediction tool based on the hidden Markov model for 
transmembrane protein topology and peptide synthesis. It seeks 
to address the problems caused by the similarity between the 
helices of transmembrane proteins and sine peptides.

-
KÄLL, Lukas; KROGH, Anders; SONNHAMMER, Erik L.L. A Combined 
Transmembrane Topology and Signal Peptide Prediction Method. Journal Of 
Molecular Biology, [S.L.], v. 338, n. 5, p. 1027-1036, maio 2004. Elsevier BV. [26]

antiSMASH 
5.0

Tool that identifies in the genome presented families of biosynthetic genes 
of secondary metabolites of bacteria and fungi. The new version has 
improvements in performance, maintenance and reliability of the results.

Python 3
BLIN, Kai et al. AntiSMASH 5.0: updates to the secondary metabolite 
genome mining pipeline. Nucleic Acids Research, [S.L.], v. 47, n. 
1, p. 81-87, 29 abr. 2019. Oxford University Press (OUP). [27]

HMMscan
Part of a software suite called HMMER that compares 
a user-reported sequence (query) with the HMM 
database of the PFAM profile of protein families.

Perl, Python 
e Java

FINN, R. D.; CLEMENTS, J.; EDDY, S. R.. HMMER web server: interactive 
sequence similarity searching. Nucleic Acids Research, [S.L.], v. 39, 
n. , p. 29-37, 18 maio 2011. Oxford University Press (OUP). [28]

HMMsearch
Part of the HMMER software package responsible for 
matching an HMM profile against a sequencing database, 
covering several sequencing source formats.

Perl, Python 
e Java

FINN, R. D.; CLEMENTS, J.; EDDY, S. R.. HMMER web server: interactive 
sequence similarity searching. Nucleic Acids Research, [S.L.], v. 39, 
n. , p. 29-37, 18 maio 2011. Oxford University Press (OUP). [29]

SignalP
Artificial neural network that aims to recognise signal 
peptides and their cleavage sites, having a network for each 
of these tasks. It covers eukaryotes and prokaryotes.

-

NIELSEN, H. et al. Identification of prokaryotic and eukaryotic 
signal peptides and prediction of their cleavage sites. Protein 
Engineering Design And Selection, [S.L.], v. 10, n. 1, p. 1-6, 
1 jan. 1997. Oxford University Press (OUP). [30]

BlastP
Variation of the BLAST algorithm. Its function is to compare protein 
queries with databases to restore similarities between sequences.

-
ALTSCHUL, S. et al. Gapped BLAST and PSI-BLAST: a new generation of 
protein database search programs. Nucleic Acids Research, [S.L.], v. 25, 
n. 17, p. 3389-3402, 1 set. 1997. Oxford University Press (OUP). [31]
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homepage [5], due to the existence of previous results, 
forming a partial validation mechanism for the process.

Results and Discussion

Initially, it is important to stress the great importance 
of creating a PATH variable to insert the programs to be 
installed and their dependencies, as well as the extremely 
important paths, such as the system’s base folders. There 
are different ways to accomplish this task, such as using 
the “export” command in the terminal, which modifies 
the PATH variable only for the terminal in question, or 
modifying the file itself, in order to keep the changes. 
Regardless of the method chosen, there is a large source 
of detailed information on the process.

The installation of the mentioned software is similar. 
FastQC [11] and TrimGalore [12] are obtained from 
the same site. In both cases, the compiled .zip file is 
downloaded and extracted into the target directory. The 
program can be run via the terminal with the FastQC [11] 
folder directory defined or via PATH by the line “. /fastqc” 
or “fastqc”, respectively. Attention should be paid to the 
Java version installed, because via PATH, other variants 
can be influenced so that the JRE has to be updated. It is 
best to install only the necessary dependencies according 
to a predefined list of programs to be used and their 
requirements. In the specific case of Java, you can run the 
command “java -version”, obtaining the current version, 
and then “update-java-alternatives --list”, which returns 
all the installed versions, inserted in the $PATH paths. 
Compared to the software version limiter, you can decide 
to keep it or change it using the line “sudo update-java-
alternatives path/from/version”.

TrimGalore [12] is executed by “trim_galore”, either in 
the software’s own path or via PATH, and its installation 
and execution did not present any other problems. In the 
case of Kmergenie [13] the download is via a “tar.gz” 
file. To perform the extraction, forward the folder to the 
destination directory and then enter the command “tar 
-xvf /directory”, or similar. Then change the directory to 
the extracted folder and run the command make, which 
effectively installs the program, later executed via “. /
kmergenie” or “kmergenie”.

QUAST [17], despite having a browser version, can 
be installed, presenting in this format more variability 
and greater user control over the available parameters. 
Its installation is recommended, in order to enhance the 
learning of the tool and the understanding of the process as 
a whole. To work properly you need Python 2.5 and higher 
or Python 3.3 and higher, GCC 4.7 or higher, Perl 5.6.0 or 
higher, “GNU make” and “ar” and also the “zlib” package. 
It can be installed by the source file available on your site 
or by package managers, such as pip and linuxbrew. In the 
case of the source file, extract it into the target directory 

and then run the command line “quast.py” or “./quast.py” 
through the terminal. If it returns the software options, it 
is ready to use. To test the efficiency of the installation on 
a larger scale, run the command “quast.py -o /directory/
to/results /quastdirectory/test_data/contigs_1.fasta”. After 
checking the final message, which indicates the number 
of errors and warnings that appeared in the process. If no 
errors or warnings are returned, the program is ready for 
use. However, if it returns, you should check the “quast.
log” file in the results directory to try to understand 
and resolve the problems. One warning that appeared 
several times during the development of this article was: 
“Cannot draw diagrams: python-matplotlib is missing 
or corrupted”, referring to the lack of a specific python 
package, matplotlib, which is used in the creation of the 
graphics. After several tests of possible resolutions, a final 
and relatively simple conclusion was reached. The package 
in question was in a different version of Python run by 
QUAST [17]. To quickly solve the problem, the version of 
Python run by QUAST [17] presented in the initial lines 
of the terminal after executing the quast.py command was 
checked and found to belong to Python2. The command 
was then executed as “python3 quast.py”, forcing it to 
run on Python3, the version on which the package was 
installed. This problem reinforces the importance of 
installing only the necessary dependencies when possible. 
You can try to work around this by assimilating the 
package to the Python2 version as well, but this would 
take more time and could cause obstacles in the future.

Another error encountered shows the output “’cgi’ has 
no ‘escape’ attribute”. To fix it, pay attention to the last 
line of the terminal before the error appears that interrupts 
the process and the directory it presents. Then find the file 
in the specified directory by opening it. Below the line 
“import cgi”, add the line “import html”, then find the line 
“cgi.escape”, delete it and replace it with “html.escape”. 
With these changes, QUAST [17] will run normally again. 
The latter problem seems to be more common when 
installing via pack manager pip. One interesting point 
worth mentioning is the fact that following this installation 
path for QUAST [17] also acquires the “--glimmer’’ 
function, which already performs an initial prediction on 
the parsed sequence.

BUSCO [18] has several installation options, similar 
to those presented below for the annotation software and, 
as such, presents an extensive list of dependencies. It is 
executed by the busco command and has the configuration 
file call. This file contains information necessary for 
the proper functioning of the program, which must be 
edited before running it. It is recommended to specify all 
possible and relevant paths and parameters, thus ensuring 
a better performance of the program. An important point 
to note is the existence of optional and function-specific 
dependencies. In this case, it is up to the researcher to 
consider whether they are necessary or can be omitted in 
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this project.
When it comes to annotation-related software, a more 

dense field is entered. For the most part, they require a 
large number of installed dependencies, which may include 
other annotation software, as in the case of Maker. As a 
counterpoint, they often feature web versions, which have 
limitations, but provide a more intuitive mechanism and 
multiple modes of installation. The routes involving 
package managers, pip and anaconda, include the addition 
of the necessary dependencies, making the process 
quicker and easier. Another route available is through 
the docker images, mostly executed by the command 
“compile docker” in the terminal directory containing 
the so-called Docker file. It should be noted that the 
above options often have limitations linked to specific 
functions, which are outlined in detail in the read-only 
files accompanying the software. The final alternative 
is to acquire the software via source code. All paths 
have advantages and disadvantages, and it is up to the 
user to gauge their needs and capabilities and, based on 
these, choose the right direction. It is recommended that 
you carefully read the websites and read.me files of the 
programs to be installed, as they contain an installation 
guide for different operating systems and information 
necessary for the correct execution of their code.

A good starting point is with Augustus and HMMER, 
as these, as well as individual programs that present 
interesting and extremely important results for structural 
annotation, are dependencies of other more “complex” 
programs such as BUSCO. In some programs, such as 
Augustus, you can change files, in this case “common.
mk”, setting COMPGENEPRED, Add SQLITE and Add 
MYSQL to “false”, to obtain a simple and fast version 
of the program, which does not lose performance, only 
some areas of performance that may be dispensable for 
certain genomes.

Due to the increase of dependencies and the diversity 
of applications, numerous version conflicts and errors 
can occur where already installed programs are missing 
because the directories are not included in the PATH 
variable. In programs with higher installation complexity, 
it is possible to perform a dependency check-list or even 
run the “make” command or the corresponding command 
that starts the assembly of the program, and wait for it to 
fail, because when this happens it issues an alert. .identify 
required files that are not specified. The executable files of 
the programs are installed in the /bin folder and, in case 
they are missing, you should consult the /src directory, 
always in the main folder of the software. So, in general, 
these are the paths to be added to the PATH variable. 
Below, you can see a table with the main commands of 
each chosen software, as well as some of general interest.

Table 2: Commands of interest for the present workflow.

Software Command line Function

FastQC ./fastqc ou fastqc Executes the programme.

TrimGalore

trim_galore “opções” 
“caminho do arquivo”

Executes the program.

trim_galore -h ou 
trim_galore --help

Displays the command 
list of the program.

Kmergenie

./kmergenie “caminho 
do arquivo”

Runs the program.

./kmergenie
Displays extra information 
about the program.

SPAdes

spades.py
Displays the command 
list of the program.

spades.py --test
Runs the dataset to 
test the installation.

spades.py “opções” -o 
“diretório de saída”

Runs the program.

IDBA-UD idba ou idba_ud
Displays information 
about the current version 
of the program.

Quast

fq2fa “arquivo.fq” “arquivo.fa”
Converts FASTQ readings 
to FASTA, from the bin/
fq2fa directory.

./setup.py install ou ./
setup.py install_full

Installs the full basic 
version of the program.

quast.py ou ./quast.py
Displays general information 
about the software.

python3 quast.py
Forces the software to 
run through Python 3.

quast.py -o “diretório de 
saída” “/diretóriodoquast/
test_data/contigs_1.fasta”

Tests the installation 
of the software.

BUSCO

busco
Displays general information 
about the software.

busco --list-datasets
Displays the names of 
the datasets available 
for test execution.

busco -i “arquivo” -l “nome/
caminho_do_dataset” -o 
“diretório_de_saída” -m 
“modo” “demais_opções”

Runs the BUSCO search.

General 
commands

export PATH=$PATH:/
caminho_a_ser_exportado

Adds certain directory to 
PATH for specific terminal.

java -version
Displays the current 
version of Java.

update-java-alternatives --list
Displays all installed 
versions of Java.

sudo update-java-alternatives /
diretório_da_versão_desejada

Toggles between previously 
installed Java versions.

tar -xvf /arquivo_a_ser_extraído
Extract the tar.gz files in the 
directory where it is located.

make
Execute the make file 
present in the directory, 
installing certain software.

./build.sh
Mount the files of 
certain software.

docker build .
Mount files from a dockable 
image present in the directory.
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The part related to functional annotation will not 
be addressed in this article due to the high complexity 
present in this environment. To get started in this area, 
it is suggested to adapt to the use of BUSCO [18], due 
to the amount of dependencies and variable indexing 
system through the configuration file. In this way, the 
user will start to get used to the more computationally 
dense working environment and can then move on to 
more specific search and annotation programs. The use of 
the Maker programme can also be of great value to start 
the annotation process in general, as this software brings 
together several different steps in favour of the creation of 
genomic databases. However, its installation and execution 
is very complex. It works through four configuration files, 
as opposed to the single central file of Busco, and covers an 
extremely high number of dependencies, both mandatory 
and optional. In addition, it needs other programs, such 
as Apollo, to understand and study the results presented, 
programs that also have a more difficult installation flow.

Conclusions

The three general steps present very different degrees of 
complexity. Data pre-processing requires an understanding 
of the organism to be sequenced and how the experimental 
part of the process works. Basic level sequencing can be 
performed without much knowledge about the object of 
study, but optimal levels can be achieved with the addition 
of the same. In the case of annotation, it is essential to have 
extensive knowledge of the whole process logistics, both 
of the species and its phylogeny and of the programme to 
be implemented and the practical part of the study. This 
part of the project also often includes manual annotations, 
which requires special depth and focus.

At all levels of genetic sequencing, attention must 
be paid to the guides and text files provided by the 
programme developers, however, it is mainly the structural 
annotation programmes that require time to be set aside 
for reading. Through these you will discover the main 
lines of execution and the typical customisation options 
of the software, as well as its peculiarities. In addition, 
following or simply visiting the central Github page of 
the program, when available, can be extremely useful to 
identify possible bugs.

The comparison of assemblers, even if only between 
two programs, showed the essentiality of project planning, 
where software is chosen according to the needs presented. 
However, IDBA-UD [16] returned longer contigs, where 
the total length found for the genome was 2996254 base 
pairs, higher than that of SPAdes [5], which was 2977217 
base pairs. In addition, the misassembled contigs presented 
by SPAdes [5] were more than five times longer than 
those presented by IDBA-UD [16]. Finally, the fraction 
of the genome constructed was 0.536 % higher through 

IDBA-UD [16], resulting in 98.799 %. However, it uses 
significantly more memory and time, and takes up to twice 
as long as SPAdes [5]. In view of the BUSCO analysis 
[18], the difference between the two assemblies was only 
1 BUSCO, which appears fragmented in the assembly 
via SPAdes [5]. Therefore, between the two programs 
presented, SPAdes [5] is more economical and practical, 
while IDBA-UD [16] is denser and requires more powerful 
configurations, but is able to sequence with higher apparent 
accuracy.

On the structural annotation side, you could get 
interesting results with Augustus, although it runs at a 
basic level and without all the options that can be added to 
your pipeline. From the gene and protein sequences found, 
through BlastP [33], it was possible to generally evaluate 
the success of this portion. BlastP [33] identified different 
sequences presented by the programme as already studied 
sequences of the test organism, S. aureus.

The field of in silico gene sequencing is challenging 
for researchers who are not embedded in the environment. 
However, there is a growing number of tools that aim to 
facilitate the interaction of multiple user profiles from 
different projects. There is a great deal of flexibility and 
variability of programmes, allowing for an increasingly 
personalised choice appropriate to the resources available. 
By studying the theory and practice of the process and 
seeking to learn about the wide range of software available, 
satisfactory results can be achieved, which progress with 
the repetition and expansion of knowledge in the area.
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