
Matheus Pedron Cassol et al.: Computational Environment for Genomic Sequencing and Annotation	 63

RECyT / Year 24 / Nº 38 / 2022

RECyT
Year 24 / Nº 38 / 2022 / 63–70
DOI: https://doi.org/10.36995/j.recyt.2022.38.008

Computational Environment for Genomic Sequencing and
Annotation: a workflow for application in projects by life
researchers

Configuración de Ambiente Computacional para el Ensamblaje y Anotación de
Genomas: orientaciones para investigadores del Ciencia de la Vida

Configuração de Ambiente Computacional para Montagem e Anotação Genômica:
orientações para pesquisadores da Ciência da Vida

Matheus Pedron Cassol1, *, Alexandre Rafael Lenz1,2, Rudinei Zacaria1, Scheila de Avila e Silva1

1- Universidade de Caxias do Sul, Brasil; 2- Universidade do Estado da Bahia, Brasil.

* E-mail: mpcassol@ucs.br

Received: 01/09/2021; Accepted: 21/03/2022

Abstract

The current paper seeks to approach, using a workflow, basics subjects of the bioinformatic field and also useful
informations to consider during the development of in silico researches. Installation and general usage of multiple
softwares related to different sections of the genome annotation process were also presented. At last, an model
organism, Staphylococcus aureus, was sequenced in two different softwares, SPAdes and IDBA-UD, seeking further
comparison and evaluation of the process as a whole. The quality evaluation of the assemble was established by
tests on QUAST, BUSCO and Augustus, supported by BLASTP. Results: QUAST evaluation returned genome coverage
values above 98% in both test cases, pointing towards a trustworthy assemble for this organism. Via SPAdes were
needed less computational resources, but, using IDBA-UD the sequences found were more contiguous. Results
deriving from BUSCO showed only one expected gene difference. Some proteins and genes predicted by Augustus
led to hits, sequences already studied in that organism, using the BLASTP program.

Keywords: Bioinformatic; workflow; assemble; genome; computational tools.

Resumen

El presente trabajo trata sobre un enfoque en formato de flujo de trabajo de cuestiones básicas del área, así como
información a tener en cuenta durante la elaboración de investigaciones in silico. Se centró en algunos programas
de diferentes partes del proceso de ensamblaje genómico, proporcionando orientación sobre su instalación y uso.
Finalmente, se secuenció un organismo modelo, Staphylococcus aureus, en dos softwares, SPAdes e IDBA-UD,
para la comparación y evaluación cualitativa del resultado. La evaluación de la calidad de la secuenciación se
estableció mediante pruebas en los programas QUAST, BUSCO y Augustus, con el apoyo de BLASTP. La evaluación
a través de QUAST arrojó valores de integridad en relación con el genoma de referencia superiores al 98% para
ambas pruebas, lo que indica un ensamblaje confiable para el organismo en cuestión. La herramienta SPAdes
logró secuenciar con menor capacidad computacional, pero a través de IDBA-UD se obtuvieron secuencias más
contiguas. Los resultados de BUSCO mostraron solo una diferencia genética esperada. Las proteínas y genes
esperados obtenidos por Augustus provocaron aciertos a través de BLASTP, es decir, secuencias de proteínas ya
estudiadas y descritas para el organismo.

Palabras clave: Bioinformática; workflow; ensamblaje; genoma; herramientas computacionales.

Resumo

O presente trabalho trata-se de uma abordagem em formato de workflow de questões base da área de
bioinformática, assim como informações para se levar em consideração durante a elaboração de pesquisas in
silico. Focou-se em alguns programas de diferentes partes do processo de montagem genômica, fornecendo

64	 Matheus Pedron Cassol et al.: Computational Environment for Genomic Sequencing and Annotation

RECyT / Year 24 / Nº 38 / 2022

orientações acerca de sua instalação e uso. Por fim, sequenciou-se um organismo modelo, Staphylococcus aureus,
em dois softwares, SPAdes e IDBA-UD, para fins de comparação e avaliação qualitativa do resultado. A avaliação da
qualidade do sequenciamento foi estabelecida por testes nos programas QUAST, BUSCO e pelo Augustus, apoiado
pelo BLASTP. a avaliação via QUAST retornou valores de completude em relação ao genoma referência acima de
98% para ambos testes, indicando uma montagem confiável para o organismo em questão. Via SPAdes foi-se capaz
de sequenciar com menor capacidade computacional, porém por intermédio do IDBA-UD obteve-se sequências
mais contíguas. Os resultados advindos do BUSCO apresentaram apenas um gene esperado de diferença. As
proteínas e genes esperados obtidos pelo Augustus suscitaram hits via BLASTP, ou seja, sequências proteicas já
estudadas e descritas para o organismo.

Palavras-chave: Bioinformática; workflow; montagem; genoma; ferramentas computacionais.

Introduction

Bioinformatics is proving to be of great value for
data manipulation in the field of biology. This area
of knowledge encompasses all aspects related to the
acquisition, processing, storage, distribution, analysis
and interpretation of biological information. By unifying
concepts and techniques from mathematics, statistics and
computer science, it can lead to tools capable of extending
the understanding of possible biological implications
arising from genomic data [1].

Among the applications of bioinformatics, we find the
sequencing and annotation of genomes, being the first
responsible for providing the nucleotide composition of the
genome of an organism. This technique is carried out by
equipment from Illumina1, Ion Torrent2, Pacific Biosciences
(PacBio)3 and Oxford Nanopore Technology (ONT)4, for
example. This equipment allows the reading of text files
containing DNA fragments called reads, which must be
organised in order to represent the organism’s genome.
This procedure is called genome assembly, the most
common approach being de novo, in which the genome is
reconstructed exclusively from the overlay information of
the reads. The sequences resulting from genome assembly
are called contigs. For prokaryotic organisms, genome
assembly can be performed by considering another genome
as a reference model to guide the mapping of reads or by
rearranging the contigs resulting from previous assembly
[2,3]. Finally, the contigs are organised to form scaffolds,
which will be used to perform genome annotation. Some

1- ILLUMINA. Illumina: sequencing and array-based solutions for gene-
tic research. Sequencing and array-based solutions for genetic research.
Available in: <https://www.illumina.com/>. Accessed on: 01 jul. 2021.

2- THERMO FISHER SCIENTIFIC BR. Ion Torrent. Available in: <https://www.
thermofisher.com>. Accessed on: 01 jul. 2021.

3- PACIFIC BIOSCIENCES. PacBio: sequence with confidence. Sequence
with confidence. Available in: <https://www.pacb.com>. Accessed on: 01
jul. 2021.

4- OXFORD NANOPORE TECHNOLOGIES. Nanopore. Available in: <https://
nanoporetech.com/>. Accessed on: 01 jul. 2021.

examples of software used in this initial stage are: Velvet
[4], SPAdes [5] and Trinity [6].

After sequencing, it is possible to obtain structural
and functional information about the genome under
investigation, as well as data that contribute to the
evolutionary knowledge of organisms, innovations in
diagnostic methods, new drugs, vaccines, possible means
of prevention and more effective treatments against
diseases or pests, and many other applications. Such
information is obtained through annotation, which can be
understood as a multilevel computational process involving
nucleotides, proteins and processes [7].

In this context, for a project dedicated to genome
assembly and annotation to develop successfully, it is
necessary to initially define the application platform
and the operating system to be used. After acquiring the
equipment, translating the demands of a project into the
specifications of a server (hardware) is fundamental to
dimension the current needs. Depending on the chosen
applications, it is important to carry out an analysis of
the processing volume, memory usage and disk space
consumption. For assembly, execution times and memory
requirements increase with the amount of data. Therefore,
there is a positive correlation between genome size and
execution time and memory requirements [3]. For example,
according to the company DNA STAR, which specialises
in genomic sequencing, the organism Saccharomyces
cerevisiae has a genome of approximately 15 MBases,
thus requiring approximately 20 Gb of RAM, with 1 GB
of RAM per MBase of genome length being recommended.
These values can also be changed depending on the
sequencer chosen and its mode of operation.

Genome assembly and annotation are purely
computational procedures, usually performed by software
without a graphical interface in a UNIX environment,
which can be challenging for beginners in this environment.
In addition, the results produced by one tool are not always
in a format that can be used in the next tool in a workflow.
In the literatura, it is possible to find articles that report
the steps and procedures necessary for the execution of
genomic assembly and annotation, and also discuss the

Matheus Pedron Cassol et al.: Computational Environment for Genomic Sequencing and Annotation	 65

RECyT / Year 24 / Nº 38 / 2022

peculiarities involved for each type of organism. In this
regard, Zhou et al. [8] present the appropriate tools for
genome assembly according to the sequencing approach.
Keith [9] presents a compilation of methodological aspects
related to genomic sequencing, assembly, annotation, data
management, protein analysis and phylogenetic analysis. In
the same vein, Ekblom and Wolf [10] analyse the workflow
of a genomics project, from experimental procedures in the
laboratory to the resulting applications of genome projects.
In addition, Del Ángel et al. [3] point out important aspects
that need to be analysed at the different stages. However,
no article addresses the computational-technical difficulties
related to the software execution environment.

In this context, many researchers in the field of life are
discouraged to perform purely in silico procedures, either
by technical-computational aspects or by the beginning of
Bioinformatics as a science in the country. Although the
installation of the software seems a simple task, during the
assembly and annotation project of the fungus Penicillium
equinulattum, carried out by researchers from the University
of Caxias do Sul, some peculiarities were noticed that are
not described in the installation tutorials and that, despite
having relatively simple solutions, require significant time

to diagnose. Thus, this article addresses technical aspects
related to the Information Technology Infrastructure for its
application in genomic assembly and annotation projects by
researchers in the field of life sciences.

Materials and Methods

The methodology consisted in the elaboration of an
orientation workflow for the installation and configuration
of a computer server dedicated to genomic assembly
and annotation. In this regard, this section describes the
software and hardware selection steps.

Genome Assembly and Annotation Tools

The choice of tools was based on the experience of
the team involved in the P. echinulatum fungal assembly
and annotation project, which includes researchers in the
areas of Biology and Computer Science. In this sense,
software or pipelines were sought to reduce computational
difficulties, as shown in Table 1.

Table 1: Computational tools.

Tool Target Language Reference

FastQC
Performs quality control of raw data from high-
throughput sequencing pipelines.

Java
ANDREWS, Simon et al. FastQC: a quality control tool
for high throughput sequence data. 2010. [11]

TrimGalore
Aims to automate the quality of the file containing the reads,
with additional functionalities related to the quality control
of the file containing the data to be sequenced.

Perl
KRUEGER, Felix. Trim galore. A wrapper tool around Cutadapt
and FastQC to consistently apply quality and adapter
trimming to FastQ files, v. 516, p. 517, 2015. [12]

KmerGenie
Practically and accurately analyses the best value of k to
be used in sequencing, arriving at it using approximate
abundance histograms over multiple possible values.

R e Python
2.7 ou
maior

CHIKHI, R.; MEDVEDEV, P. Informed and automated k-mer size
selection for genome assembly. Bioinformatics, [S.L.], v. 30, n. 1,
p. 31-37, 3 jun. 2013. Oxford University Press (OUP). [13]

SOAP-
denovo 2

Composed of six modules, this software works on correcting read
errors, constructing de Bruijn graphs, joining contigs, mapping
paired-end reads, constructing scaffolds, and filling spaces.

C e C++
LUO, Ruibang et al. SOAPdenovo2: an empirically improved memory-
efficient short-read de novo assembler. Gigascience, [S.L.], v. 1,
n. 1, p. 1-6, dez. 2012. Oxford University Press (OUP). [14]

Abyss 2.0
The successor assembly program to Abyss, which works on assembling
genomes across large datasets using Bloom filters. It uses less
memory and has competitive results with other assembly software.

C++
JACKMAN, Shaun D. et al. ABySS 2.0: resource-efficient assembly of
large genomes using a bloom filter. Genome Research, [S.L.], v. 27, n.
5, p. 768-777, 23 fev. 2017. Cold Spring Harbor Laboratory. [15]

Velvet

A set of algorithms that act on genome assembly through
Brujin graphs, eliminating errors and circumventing repeated
sequences. It seeks greater efficiency in extremely short reads,
from 25 to 50 base pairs, in the case of pairwise reads.

C
ZERBINO, Daniel R.. Using the Velvet de novo Assembler for
Short‐Read Sequencing Technologies. Current Protocols In
Bioinformatics, [S.L.], v. 31, n. 1, p. 1-13, set. 2010. Wiley. [4]

Spades
A multi-pipelined assembler that works on Brujin graphs, using kmers only
in initial assembly, followed by graph-theoretic operations. Its main focus is
genomic assembly with data obtained from single cells, such as bacteria.

Python
BANKEVICH, Anton et al. SPAdes: a new genome assembly algorithm
and its applications to single-cell sequencing. Journal Of Computational
Biology, [S.L.], v. 19, n. 5, p. 455-477, maio 2012. Mary Ann Liebert Inc. [5]

IDBA-UD y
variantes

Successor to IDBA that seeks to assemble genomes with large
differences prior to read coverage. It employs iteration of k values,
being able to reconstruct longer contigs more accurately. It focuses on
reference-free assemblies, while the IDBA-Hybrid version addresses
cases where there are similar genomes as reference. In the case of
transcriptomes, the use of the IDBA-Tran variant is recommended.

C++
PENG, Y. et al. IDBA-UD: a de novo assembler for single-cell and metagenomic
sequencing data with highly uneven depth. Bioinformatics, [S.L.], v. 28,
n. 11, p. 1420-1428, 11 abr. 2012. Oxford University Press (OUP). [16]

QUAST y
variantes

Tool developed with the intention of evaluating and comparing genome
assemblies by different platforms, with or without reference genome.

Python
e Perl

MIKHEENKO, Alla; PRJIBELSKI, Andrey; SAVELIEV, Vladislav;
ANTIPOV, Dmitry; GUREVICH, Alexey. Versatile genome assembly
evaluation with QUAST-LG. Bioinformatics, [S.L.], v. 34, n. 13, p.
142-150, 27 jun. 2018. Oxford University Press (OUP). [17]

BUSCO
Software that seeks to quantify evaluatively the assembly of genomes
taking into account the number of genes presented. It uses a database
composed of orthologous genes from six main phylogenetic clades.

Python
MANNI, Mosè et al. BUSCO update: novel and streamlined workflows along
with broader and deeper phylogenetic coverage for scoring of eukaryotic,
prokaryotic, and viral genomes. arXiv preprint arXiv:2106.11799, 2021. [18]

Trimmomatic
Flexible preprocessing tool that considers optimized read
pairs for data obtained through Illumina NGS.

Java
BOLGER, Anthony M.; LOHSE, Marc; USADEL, Bjoern. Trimmomatic: a
flexible trimmer for illumina sequence data. Bioinformatics, [S.L.], v. 30,
n. 15, p. 2114-2120, 1 abr. 2014. Oxford University Press (OUP). [19]

Trinity

Package with three independent modules that again performs
full transcriptome reconstruction. It is capable of acting
on several samples from direct reads of RNA sequences,
especially those where there is no reference genome.

C++, Java
e Python

HAAS, Brian J et al. De novo transcript sequence reconstruction
from RNA-seq using the Trinity platform for reference generation
and analysis. Nature Protocols, [S.L.], v. 8, n. 8, p. 1494-1512, 11
jul. 2013. Springer Science and Business Media LLC. [6]

66	 Matheus Pedron Cassol et al.: Computational Environment for Genomic Sequencing and Annotation

RECyT / Year 24 / Nº 38 / 2022

Hardware and operating system characteristics

For the development of the proposed configuration
workflow, the hardware resources used were configured
as follows:

• Processor: Intel® Xeon® CPU x5650 at 2.67 GHz
x 12;
• Installed memory (RAM): 65.94 Gb;
• System type: 64-bit system, X64-based processor.
• Operating System: Ubuntu 20.04.2 LTS.
Among the operating systems, three stand out: MAC

OS, Windows and Linux distributions, the latter being the
most recommended for bioinformatics research purposes.
Although less intuitive for users unaccustomed to open
source systems, the variants present great flexibility and
tools for practical purposes in the field. In addition, there
are images and software developed for Linux that allow the
automatic installation of programmes of interest or even
help in the process, as is the case of Dugong and Unipro
UGENE. There are many options for distribution, choosing
Ubuntu in this article, because of the greater amount of
information available on how it works and also because of
the number of tools that support it.

Setting up the computing environment

The configuration of the computing environment

involved the installation of the operating system, the
configuration of the network environment, the firewall and
the user account permissions. The chosen layout makes
these steps clear and objective, without presenting major
problems for the user. The greatest degree of difficulty is
found in the use of the terminal, which is typical of Linux
systems, but there is a wide range of manuals and guides
on this in the virtual environment.

The next step must be the installation and configuration
of the sequencing software, along with the necessary
permissions to be able to operate fully. With these duly
installed, it is possible to act on the management and
processing of the memory dedicated to each one, finalising
the configuration of the structure necessary to carry out
the research related to the genome project. The software
was chosen to cover the main steps of the sequencing
process. FastQC [11], TrimGalore [12] and Kmergenie
[13] were used for pre-processing. For assembly, SPAdes
[5] and IDBA-UD [16] software were used to compare the
difference between constant k-value and iterative k-value
assemblies. Data evaluation was performed using Quast
[17] and BUSCO [18] with reference genome. As for the
annotation, only the initial part, referring to the structural
annotation, was performed. The Augustus software [21],
supported by the BLASTP tool [33], was used for this
purpose. The datasets used are from the Staphylococcus
aureus organism available on the SPAdes software

Hisat2
A tool that aligns RNA and DNA sequences using a Ferragina
Manzini index, mapping them to a population of the
human genome or to a single reference genome.

C++, Python
e Java

KIM, Daehwan et al. Graph-based genome alignment and genotyping
with HISAT2 and HISAT-genotype. Nature Biotechnology, [S.L.], v. 37, n. 8,
p. 907-915, ago. 2019. Springer Science and Business Media LLC. [20]

Augustus

Structural annotation software. Through a probabilistic model of a DNA
sequence that has a gene structure, it defines the probable distribution
in the given set, pointing out its coding regions. It uses different fonts,
which can be provided by the user, contained in the program or external.

C++, Perl,
Python

KELLER, Oliver; KOLLMAR, Martin; STANKE, Mario; WAACK, Stephan.
A novel hybrid gene prediction method employing protein
multiple sequence alignments. Bioinformatics, [S.L.], v. 27, n. 6,
p. 757-763, 6 jan. 2011. Oxford University Press (OUP). [21]

GeneMark-
ET

An ab-initio algorithm that identifies and predicts genes capable of
encoding proteins in eukaryotic genomes, with a focus on fungi. It
aims to extend the performance of its predecessor, GeneMark-ES, by
integrating the process of aligning sequential RNA reads into the self-
training process. It thus acquires greater accuracy in gene prediction.

LOMSADZE, Alexandre et al. Integration of mapped RNA-
Seq reads into automatic training of eukaryotic gene finding
algorithm. Nucleic Acids Research, [S.L.], v. 42, n. 15, p. 119-
119, 2 jul. 2014. Oxford University Press (OUP). [22]

tRNAScan-SE
Software that identifies 99-100% of genes linked to RNA transport in
DNA sequences, yielding less than one false positive per 15 Gb. Uses
additional extensions to identify unusual carrier RNA homologues.

Perl
LOWE, Todd M.; EDDY, Sean R.. TRNAscan-SE: a program for improved
detection of transfer rna genes in genomic sequence. Nucleic Acids Research,
[S.L.], v. 25, n. 5, p. 955-964, 1 mar. 1997. Oxford University Press (OUP). [23]

InterproScan

Searches for proteins and amino acid sequences in a database
called Interpro. Integrates predictive information about protein
function, providing a broad view of the families to which the
protein belongs and the domains and sites it contains.

Objective-C,
Java

BLUM, Matthias et al. The InterPro protein families and domains
database: 20 years on. Nucleic Acids Research, [S.L.], v. 49, n. 1,
p. 344-354, 6 nov. 2020. Oxford University Press (OUP). [24]

EggNOG 5.0
Database covering the orthologous relationships and evolutionary
history of genes, as well as annotations on features.

-

HUERTA-CEPAS, Jaime et al. EggNOG 5.0: a hierarchical, functionally
and phylogenetically annotated orthology resource based on 5090
organisms and 2502 viruses. Nucleic Acids Research, [S.L.], v. 47, n.
1, p. 309-314, 12 nov. 2018. Oxford University Press (OUP). [25]

Phobius

Prediction tool based on the hidden Markov model for
transmembrane protein topology and peptide synthesis. It seeks
to address the problems caused by the similarity between the
helices of transmembrane proteins and sine peptides.

-
KÄLL, Lukas; KROGH, Anders; SONNHAMMER, Erik L.L. A Combined
Transmembrane Topology and Signal Peptide Prediction Method. Journal Of
Molecular Biology, [S.L.], v. 338, n. 5, p. 1027-1036, maio 2004. Elsevier BV. [26]

antiSMASH
5.0

Tool that identifies in the genome presented families of biosynthetic genes
of secondary metabolites of bacteria and fungi. The new version has
improvements in performance, maintenance and reliability of the results.

Python 3
BLIN, Kai et al. AntiSMASH 5.0: updates to the secondary metabolite
genome mining pipeline. Nucleic Acids Research, [S.L.], v. 47, n.
1, p. 81-87, 29 abr. 2019. Oxford University Press (OUP). [27]

HMMscan
Part of a software suite called HMMER that compares
a user-reported sequence (query) with the HMM
database of the PFAM profile of protein families.

Perl, Python
e Java

FINN, R. D.; CLEMENTS, J.; EDDY, S. R.. HMMER web server: interactive
sequence similarity searching. Nucleic Acids Research, [S.L.], v. 39,
n. , p. 29-37, 18 maio 2011. Oxford University Press (OUP). [28]

HMMsearch
Part of the HMMER software package responsible for
matching an HMM profile against a sequencing database,
covering several sequencing source formats.

Perl, Python
e Java

FINN, R. D.; CLEMENTS, J.; EDDY, S. R.. HMMER web server: interactive
sequence similarity searching. Nucleic Acids Research, [S.L.], v. 39,
n. , p. 29-37, 18 maio 2011. Oxford University Press (OUP). [29]

SignalP
Artificial neural network that aims to recognise signal
peptides and their cleavage sites, having a network for each
of these tasks. It covers eukaryotes and prokaryotes.

-

NIELSEN, H. et al. Identification of prokaryotic and eukaryotic
signal peptides and prediction of their cleavage sites. Protein
Engineering Design And Selection, [S.L.], v. 10, n. 1, p. 1-6,
1 jan. 1997. Oxford University Press (OUP). [30]

BlastP
Variation of the BLAST algorithm. Its function is to compare protein
queries with databases to restore similarities between sequences.

-
ALTSCHUL, S. et al. Gapped BLAST and PSI-BLAST: a new generation of
protein database search programs. Nucleic Acids Research, [S.L.], v. 25,
n. 17, p. 3389-3402, 1 set. 1997. Oxford University Press (OUP). [31]

Matheus Pedron Cassol et al.: Computational Environment for Genomic Sequencing and Annotation	 67

RECyT / Year 24 / Nº 38 / 2022

homepage [5], due to the existence of previous results,
forming a partial validation mechanism for the process.

Results and Discussion

Initially, it is important to stress the great importance
of creating a PATH variable to insert the programs to be
installed and their dependencies, as well as the extremely
important paths, such as the system’s base folders. There
are different ways to accomplish this task, such as using
the “export” command in the terminal, which modifies
the PATH variable only for the terminal in question, or
modifying the file itself, in order to keep the changes.
Regardless of the method chosen, there is a large source
of detailed information on the process.

The installation of the mentioned software is similar.
FastQC [11] and TrimGalore [12] are obtained from
the same site. In both cases, the compiled .zip file is
downloaded and extracted into the target directory. The
program can be run via the terminal with the FastQC [11]
folder directory defined or via PATH by the line “. /fastqc”
or “fastqc”, respectively. Attention should be paid to the
Java version installed, because via PATH, other variants
can be influenced so that the JRE has to be updated. It is
best to install only the necessary dependencies according
to a predefined list of programs to be used and their
requirements. In the specific case of Java, you can run the
command “java -version”, obtaining the current version,
and then “update-java-alternatives --list”, which returns
all the installed versions, inserted in the $PATH paths.
Compared to the software version limiter, you can decide
to keep it or change it using the line “sudo update-java-
alternatives path/from/version”.

TrimGalore [12] is executed by “trim_galore”, either in
the software’s own path or via PATH, and its installation
and execution did not present any other problems. In the
case of Kmergenie [13] the download is via a “tar.gz”
file. To perform the extraction, forward the folder to the
destination directory and then enter the command “tar
-xvf /directory”, or similar. Then change the directory to
the extracted folder and run the command make, which
effectively installs the program, later executed via “. /
kmergenie” or “kmergenie”.

QUAST [17], despite having a browser version, can
be installed, presenting in this format more variability
and greater user control over the available parameters.
Its installation is recommended, in order to enhance the
learning of the tool and the understanding of the process as
a whole. To work properly you need Python 2.5 and higher
or Python 3.3 and higher, GCC 4.7 or higher, Perl 5.6.0 or
higher, “GNU make” and “ar” and also the “zlib” package.
It can be installed by the source file available on your site
or by package managers, such as pip and linuxbrew. In the
case of the source file, extract it into the target directory

and then run the command line “quast.py” or “./quast.py”
through the terminal. If it returns the software options, it
is ready to use. To test the efficiency of the installation on
a larger scale, run the command “quast.py -o /directory/
to/results /quastdirectory/test_data/contigs_1.fasta”. After
checking the final message, which indicates the number
of errors and warnings that appeared in the process. If no
errors or warnings are returned, the program is ready for
use. However, if it returns, you should check the “quast.
log” file in the results directory to try to understand
and resolve the problems. One warning that appeared
several times during the development of this article was:
“Cannot draw diagrams: python-matplotlib is missing
or corrupted”, referring to the lack of a specific python
package, matplotlib, which is used in the creation of the
graphics. After several tests of possible resolutions, a final
and relatively simple conclusion was reached. The package
in question was in a different version of Python run by
QUAST [17]. To quickly solve the problem, the version of
Python run by QUAST [17] presented in the initial lines
of the terminal after executing the quast.py command was
checked and found to belong to Python2. The command
was then executed as “python3 quast.py”, forcing it to
run on Python3, the version on which the package was
installed. This problem reinforces the importance of
installing only the necessary dependencies when possible.
You can try to work around this by assimilating the
package to the Python2 version as well, but this would
take more time and could cause obstacles in the future.

Another error encountered shows the output “’cgi’ has
no ‘escape’ attribute”. To fix it, pay attention to the last
line of the terminal before the error appears that interrupts
the process and the directory it presents. Then find the file
in the specified directory by opening it. Below the line
“import cgi”, add the line “import html”, then find the line
“cgi.escape”, delete it and replace it with “html.escape”.
With these changes, QUAST [17] will run normally again.
The latter problem seems to be more common when
installing via pack manager pip. One interesting point
worth mentioning is the fact that following this installation
path for QUAST [17] also acquires the “--glimmer’’
function, which already performs an initial prediction on
the parsed sequence.

BUSCO [18] has several installation options, similar
to those presented below for the annotation software and,
as such, presents an extensive list of dependencies. It is
executed by the busco command and has the configuration
file call. This file contains information necessary for
the proper functioning of the program, which must be
edited before running it. It is recommended to specify all
possible and relevant paths and parameters, thus ensuring
a better performance of the program. An important point
to note is the existence of optional and function-specific
dependencies. In this case, it is up to the researcher to
consider whether they are necessary or can be omitted in

68	 Matheus Pedron Cassol et al.: Computational Environment for Genomic Sequencing and Annotation

RECyT / Year 24 / Nº 38 / 2022

this project.
When it comes to annotation-related software, a more

dense field is entered. For the most part, they require a
large number of installed dependencies, which may include
other annotation software, as in the case of Maker. As a
counterpoint, they often feature web versions, which have
limitations, but provide a more intuitive mechanism and
multiple modes of installation. The routes involving
package managers, pip and anaconda, include the addition
of the necessary dependencies, making the process
quicker and easier. Another route available is through
the docker images, mostly executed by the command
“compile docker” in the terminal directory containing
the so-called Docker file. It should be noted that the
above options often have limitations linked to specific
functions, which are outlined in detail in the read-only
files accompanying the software. The final alternative
is to acquire the software via source code. All paths
have advantages and disadvantages, and it is up to the
user to gauge their needs and capabilities and, based on
these, choose the right direction. It is recommended that
you carefully read the websites and read.me files of the
programs to be installed, as they contain an installation
guide for different operating systems and information
necessary for the correct execution of their code.

A good starting point is with Augustus and HMMER,
as these, as well as individual programs that present
interesting and extremely important results for structural
annotation, are dependencies of other more “complex”
programs such as BUSCO. In some programs, such as
Augustus, you can change files, in this case “common.
mk”, setting COMPGENEPRED, Add SQLITE and Add
MYSQL to “false”, to obtain a simple and fast version
of the program, which does not lose performance, only
some areas of performance that may be dispensable for
certain genomes.

Due to the increase of dependencies and the diversity
of applications, numerous version conflicts and errors
can occur where already installed programs are missing
because the directories are not included in the PATH
variable. In programs with higher installation complexity,
it is possible to perform a dependency check-list or even
run the “make” command or the corresponding command
that starts the assembly of the program, and wait for it to
fail, because when this happens it issues an alert. .identify
required files that are not specified. The executable files of
the programs are installed in the /bin folder and, in case
they are missing, you should consult the /src directory,
always in the main folder of the software. So, in general,
these are the paths to be added to the PATH variable.
Below, you can see a table with the main commands of
each chosen software, as well as some of general interest.

Table 2: Commands of interest for the present workflow.

Software Command line Function

FastQC ./fastqc ou fastqc Executes the programme.

TrimGalore

trim_galore “opções”
“caminho do arquivo”

Executes the program.

trim_galore -h ou
trim_galore --help

Displays the command
list of the program.

Kmergenie

./kmergenie “caminho
do arquivo”

Runs the program.

./kmergenie
Displays extra information
about the program.

SPAdes

spades.py
Displays the command
list of the program.

spades.py --test
Runs the dataset to
test the installation.

spades.py “opções” -o
“diretório de saída”

Runs the program.

IDBA-UD idba ou idba_ud
Displays information
about the current version
of the program.

Quast

fq2fa “arquivo.fq” “arquivo.fa”
Converts FASTQ readings
to FASTA, from the bin/
fq2fa directory.

./setup.py install ou ./
setup.py install_full

Installs the full basic
version of the program.

quast.py ou ./quast.py
Displays general information
about the software.

python3 quast.py
Forces the software to
run through Python 3.

quast.py -o “diretório de
saída” “/diretóriodoquast/
test_data/contigs_1.fasta”

Tests the installation
of the software.

BUSCO

busco
Displays general information
about the software.

busco --list-datasets
Displays the names of
the datasets available
for test execution.

busco -i “arquivo” -l “nome/
caminho_do_dataset” -o
“diretório_de_saída” -m
“modo” “demais_opções”

Runs the BUSCO search.

General
commands

export PATH=$PATH:/
caminho_a_ser_exportado

Adds certain directory to
PATH for specific terminal.

java -version
Displays the current
version of Java.

update-java-alternatives --list
Displays all installed
versions of Java.

sudo update-java-alternatives /
diretório_da_versão_desejada

Toggles between previously
installed Java versions.

tar -xvf /arquivo_a_ser_extraído
Extract the tar.gz files in the
directory where it is located.

make
Execute the make file
present in the directory,
installing certain software.

./build.sh
Mount the files of
certain software.

docker build .
Mount files from a dockable
image present in the directory.

Matheus Pedron Cassol et al.: Computational Environment for Genomic Sequencing and Annotation	 69

RECyT / Year 24 / Nº 38 / 2022

The part related to functional annotation will not
be addressed in this article due to the high complexity
present in this environment. To get started in this area,
it is suggested to adapt to the use of BUSCO [18], due
to the amount of dependencies and variable indexing
system through the configuration file. In this way, the
user will start to get used to the more computationally
dense working environment and can then move on to
more specific search and annotation programs. The use of
the Maker programme can also be of great value to start
the annotation process in general, as this software brings
together several different steps in favour of the creation of
genomic databases. However, its installation and execution
is very complex. It works through four configuration files,
as opposed to the single central file of Busco, and covers an
extremely high number of dependencies, both mandatory
and optional. In addition, it needs other programs, such
as Apollo, to understand and study the results presented,
programs that also have a more difficult installation flow.

Conclusions

The three general steps present very different degrees of
complexity. Data pre-processing requires an understanding
of the organism to be sequenced and how the experimental
part of the process works. Basic level sequencing can be
performed without much knowledge about the object of
study, but optimal levels can be achieved with the addition
of the same. In the case of annotation, it is essential to have
extensive knowledge of the whole process logistics, both
of the species and its phylogeny and of the programme to
be implemented and the practical part of the study. This
part of the project also often includes manual annotations,
which requires special depth and focus.

At all levels of genetic sequencing, attention must
be paid to the guides and text files provided by the
programme developers, however, it is mainly the structural
annotation programmes that require time to be set aside
for reading. Through these you will discover the main
lines of execution and the typical customisation options
of the software, as well as its peculiarities. In addition,
following or simply visiting the central Github page of
the program, when available, can be extremely useful to
identify possible bugs.

The comparison of assemblers, even if only between
two programs, showed the essentiality of project planning,
where software is chosen according to the needs presented.
However, IDBA-UD [16] returned longer contigs, where
the total length found for the genome was 2996254 base
pairs, higher than that of SPAdes [5], which was 2977217
base pairs. In addition, the misassembled contigs presented
by SPAdes [5] were more than five times longer than
those presented by IDBA-UD [16]. Finally, the fraction
of the genome constructed was 0.536 % higher through

IDBA-UD [16], resulting in 98.799 %. However, it uses
significantly more memory and time, and takes up to twice
as long as SPAdes [5]. In view of the BUSCO analysis
[18], the difference between the two assemblies was only
1 BUSCO, which appears fragmented in the assembly
via SPAdes [5]. Therefore, between the two programs
presented, SPAdes [5] is more economical and practical,
while IDBA-UD [16] is denser and requires more powerful
configurations, but is able to sequence with higher apparent
accuracy.

On the structural annotation side, you could get
interesting results with Augustus, although it runs at a
basic level and without all the options that can be added to
your pipeline. From the gene and protein sequences found,
through BlastP [33], it was possible to generally evaluate
the success of this portion. BlastP [33] identified different
sequences presented by the programme as already studied
sequences of the test organism, S. aureus.

The field of in silico gene sequencing is challenging
for researchers who are not embedded in the environment.
However, there is a growing number of tools that aim to
facilitate the interaction of multiple user profiles from
different projects. There is a great deal of flexibility and
variability of programmes, allowing for an increasingly
personalised choice appropriate to the resources available.
By studying the theory and practice of the process and
seeking to learn about the wide range of software available,
satisfactory results can be achieved, which progress with
the repetition and expansion of knowledge in the area.

References

1.   Borém, Aluízio; Santos, Fabrício Rodrigues. Biotecnologia Sim-
plificada. Viçosa: Editora Suprema, 2001.

2.   Sohn, Jang-Il; Nam, Jin-Wu. The present and future ofde
novowhole-genome assembly. Briefings In Bioinfor-
matics, [S.L.], p. 1-18, 14 out. 2016. Oxford University
Press (OUP).

3.   Angel, Victoria Dominguez del et al. Ten steps to get started
in Genome Assembly and Annotation. F1000Research,
[S.L.], v. 7, p. 148, 5 fev. 2018. F1000 Research Ltd.

4.   Zerbino, Daniel R. Using the Velvet de novo Assembler for
Short‐Read Sequencing Technologies. Current Proto-
cols In Bioinformatics, [S.L.], v. 31, n. 1, p. 1-13, set.
2010. Wiley.

5.   Bankevich, Anton et al. SPAdes: a new genome assembly
algorithm and its applications to single-cell sequen-
cing. Journal Of Computational Biology, [S.L.], v. 19,
n. 5, p. 455-477, maio 2012. Mary Ann Liebert Inc.

6.   Haas, Brian J et al. De novo transcript sequence recons-
truction from RNA-seq using the Trinity platform for
reference generation and analysis. Nature Protocols,
[S.L.], v. 8, n. 8, p. 1494-1512, 11 jul. 2013. Springer
Science and Business Media LLC.

70	 Matheus Pedron Cassol et al.: Computational Environment for Genomic Sequencing and Annotation

RECyT / Year 24 / Nº 38 / 2022

7.   Stein, Lincoln. Genome annotation: from sequence to
biology. Nature Reviews Genetics, [S.L.], v. 2, n. 7,
p. 493-503, jul. 2001. Springer Science and Business
Media LLC.

8.   Zhou, Xiaofan et al. In Silico Whole Genome Sequencer
and Analyzer (iWGS): a computational pipeline to gui-
de the design and analysis of de novo genome sequen-
cing studies. G3 Genes|Genomes|Genetics, [S.L.], v. 6,
n. 11, p. 3655-3662, 1 nov. 2016. Oxford University
Press (OUP).

9.   Keith, Jonathan M. Bioinformatics. [S.I]: Humana Press,
2017. 491 p.

10.   Ekblom, Robert; Wolf, Jochen B. W. A field guide to whole‐
genome sequencing, assembly and annotation. Evolu-
tionary Applications, [S.L.], v. 7, n. 9, p. 1026-1042,
24 jun. 2014. Wiley.

11.   Andrews, Simon et al. FastQC: a quality control tool for
high throughput sequence data. 2010.

12.   KRUEGER, Felix. Trim galore. A wrapper tool around Cu-
tadapt and FastQC to consistently apply quality and
adapter trimming to FastQ files, v. 516, p. 517, 2015.

13.   Chikhi, R.; Medvedev, P. Informed and automated k-mer
size selection for genome assembly. Bioinformatics,
[S.L.], v. 30, n. 1, p. 31-37, 3 jun. 2013. Oxford Uni-
versity Press (OUP).

14.   Luo, Ruibang et al. SOAPdenovo2: an empirically im-
proved memory-efficient short-read de novo assem-
bler. Gigascience, [S.L.], v. 1, n. 1, p. 1-6, dez. 2012.
Oxford University Press (OUP).

15.   Jackman, Shaun D. et al. ABySS 2.0: resource-efficient as-
sembly of large genomes using a bloom filter. Genome
Research, [S.L.], v. 27, n. 5, p. 768-777, 23 fev. 2017.
Cold Spring Harbor Laboratory.

16.   Peng, Y. et al. IDBA-UD: a de novo assembler for single-
cell and metagenomic sequencing data with highly une-
ven depth. Bioinformatics, [S.L.], v. 28, n. 11, p. 1420-
1428, 11 abr. 2012. Oxford University Press (OUP).

17.   Mikheenko, Alla; Prjibelski, Andrey; Saveliev, Vladislav; Anti-

pov, Dmitry; Gurevich, Alexey. Versatile genome assembly
evaluation with QUAST-LG. Bioinformatics, [S.L.], v.
34, n. 13, p. 142-150, 27 jun. 2018. Oxford University
Press (OUP).

18.   Manni, Mosè et al. BUSCO update: novel and streamlined
workflows along with broader and deeper phylogenetic
coverage for scoring of eukaryotic, prokaryotic, and
viral genomes. arXiv preprint arXiv:2106.11799, 2021.

19.   Bolger, Anthony M.; Lohse, Marc; Usadel, Bjoern. Trim-
momatic: a flexible trimmer for illumina sequence
data. Bioinformatics, [S.L.], v. 30, n. 15, p. 2114-2120,
1 abr. 2014. Oxford University Press (OUP).

20.   Kim, Daehwan et al. Graph-based genome alignment and
genotyping with HISAT2 and HISAT-genotype. Natu-
re Biotechnology, [S.L.], v. 37, n. 8, p. 907-915, ago.
2019. Springer Science and Business Media LLC.

21.   Keller, Oliver; Kollmar, Martin; Stanke, Mario; Waack, Stephan. A

novel hybrid gene prediction method employing protein
multiple sequence alignments. Bioinformatics, [S.L.],
v. 27, n. 6, p. 757-763, 6 jan. 2011. Oxford University
Press (OUP).

22.   Lomsadze, Alexandre et al. Integration of mapped RNA-Seq
reads into automatic training of eukaryotic gene finding
algorithm. Nucleic Acids Research, [S.L.], v. 42, n. 15,
p. 119-119, 2 jul. 2014. Oxford University Press (OUP).

23.   Lowe, Todd M.; Eddy, Sean R. TRNAscan-SE: a program
for improved detection of transfer rna genes in geno-
mic sequence. Nucleic Acids Research, [S.L.], v. 25,
n. 5, p. 955-964, 1 mar. 1997. Oxford University Press
(OUP).

24.   Blum, Matthias et al. The InterPro protein families and
domains database: 20 years on. Nucleic Acids Re-
search, [S.L.], v. 49, n. 1, p. 344-354, 6 nov. 2020.
Oxford University Press (OUP).

25.   Huerta-Cepas, Jaime et al. EggNOG 5.0: a hierarchical,
functionally and phylogenetically annotated ortholo-
gy resource based on 5090 organisms and 2502 viru-
ses. Nucleic Acids Research, [S.L.], v. 47, n. 1, p. 309-
314, 12 nov. 2018. Oxford University Press (OUP).

26.   Käll, Lukas; Krogh, Anders; Sonnhammer, Erik L.l. A Combined
Transmembrane Topology and Signal Peptide Predic-
tion Method. Journal Of Molecular Biology, [S.L.], v.
338, n. 5, p. 1027-1036, maio 2004. Elsevier BV.

27.   Blin, Kai et al. AntiSMASH 5.0: updates to the secondary
metabolite genome mining pipeline. Nucleic Acids
Research, [S.L.], v. 47, n. 1, p. 81-87, 29 abr. 2019.
Oxford University Press (OUP).

28.   Finn, R. D.; Clements, J.; Eddy, S. R. HMMER web server: in-
teractive sequence similarity searching. Nucleic Acids
Research, [S.L.], v. 39, n. , p. 29-37, 18 maio 2011.
Oxford University Press (OUP).

29.   Finn, R. D.; Clements, J.; Eddy, S. R. HMMER web server: in-
teractive sequence similarity searching. Nucleic Acids
Research, [S.L.], v. 39, n. , p. 29-37, 18 maio 2011.
Oxford University Press (OUP).

30.   Nielsen, H. et al. Identification of prokaryotic and eukar-
yotic signal peptides and prediction of their cleava-
ge sites. Protein Engineering Design And Selection,
[S.L.], v. 10, n. 1, p. 1-6, 1 jan. 1997. Oxford Univer-
sity Press (OUP).

31.   Altschul, S. et al. Gapped BLAST and PSI-BLAST: a new
generation of protein database search programs. Nu-
cleic Acids Research, [S.L.], v. 25, n. 17, p. 3389-3402,
1 set. 1997. Oxford University Press (OUP).

32.   Ucsd Jacobs School of Engineering. Single cell data sets.
Disponível em: http://bix.ucsd.edu/projects/singlecell/
nbt_data.html. Acesso em: 01 jun. 2021.

33.   National Center for Biotechnology Information. Protein
BLAST: search protein databases using a protein
query. search protein databases using a protein query.
2021. Disponível em: https://blast.ncbi.nlm.nih.gov/
Blast.cgi?PAGE=Proteins. Acesso em: 20 maio 2021.

