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Abstract 11 

 12 

Predictive food microbiology is normally based on mathematical models to predict the growth, 13 

inactivation or probability of microorganism growth which can be applied to establish the shelf-14 

life of food. At present the effort in modeling is oriented towards extrapolation of results 15 

beyond experiments in order to predict growth of interacting microorganisms and develop new 16 

food preservation processes. In the present report two different mechanistic models which 17 

describe the growth of two interacting bacteria such as  a lactic acid bacteria and  Listeria 18 

monocytogenes are developed; they include two new inhibition functions based on kinetic 19 

reactions to describe the dynamic behavior  of  heterogeneous cell population. Both models are 20 

easy to handle and permit to introduce other kinetic reactions for  more complex scenarios 21 

 22 

 23 

Key words 24 

modeling, interacting bacteria, food preservation, lactic acid bacteria 25 

  26 
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1. Introduction 27 

 28 

Predictive food microbiology is a multidisciplinary field which include disciplines such as 29 

mathematics, engineering, chemistry and microbiology to predict microbial behavioral in 30 

specific food under defined conditions.  Mathematical models incorporate basic and constitutive 31 

equations from those fields in order to predict the growth, inactivation or probability of 32 

microorganism growth which can be applied to establish the shelf-life of food (Macdonald and 33 

Sun, 1999). Lactic acid bacteria (LAB) are starter cultures able to compete with food 34 

microorganisms and inhibit or delay growth of food-borne pathogens such as Listeria  35 

monocytogenes (Vignolo et al., 2012). They can generally exert antimicrobial effect by the 36 

production of inhibitory compounds which can either be unspecific metabolites such as acetic 37 

acid, phenyllactic acid, indolelactic acid, etc. (Rodríguez-Pazo et al., 2013, Dallagnol et al., 38 

2015); or more complex and specific compounds such as bacteriocins (Alvarez-Sieiro et al., 39 

2016). Consequently, LAB is generally used as bio-preservative agents for controlling Listeria 40 

monocytogenes and their growth are usually predicted by mathematical models. In this regard, a 41 

good fitting model should be able to describe the behavior of both microorganisms with a 42 

biological interpretation. 43 

The mathematical models can be classified in three levels; primary, secondary and tertiary 44 

models (Whiting and Buchanan, 1993). The primary models consist of mathematical functions 45 

which are used to describe the time evolution of the number of cells occurring under specific 46 

conditions. In addition, the primary models provide information about the growth parameters of 47 

the microorganisms. The secondary models consist of a set of equations which describe the 48 

changes of the growth parameters as a function of the environmental conditions, the 49 

temperature, the pH and the water activity. The tertiary models consist of user programs which 50 

include the primary and secondary models and therefore permit to use them for predictive 51 

microbiology.  52 

In particular, the prediction of bacterial growth in food based on primary models must be able to 53 

describe growth with as few parameters as possible (McKellar & Lu, 2003). Bacterial growth 54 
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normally have three characteristic phases; i) the lag phase in which the bacteria get used to the 55 

environment; ii) the exponential growth phase where the biomass growth is the fastest and iii) 56 

the stationary phase where growth may even stop. 57 

Several primary models where developed in order to describe the growth phases. For instance, 58 

the logistic model (Gompertz) has been modified to describe the growth curves using four 59 

parameters (Gibson et al., 1997). The three phases have also been approximated by three linear 60 

segments in a so-called tri-linear model (Buchanan et al., 1997). Another model proposed in the 61 

literature include four parameters in a logistic type model with delay which has very good 62 

fitting capacity (Rosso et al., 1996). This model has been modified and used to describe the 63 

simultaneous growth of Listeria monocytogenes (LM) and a lactic acid bacteria (LAB) 64 

(Gimenez and Dalagerd, 2004). Despite the good fitting capacity of the fully empirical primary 65 

models, the model parameters included do not permit to describe the mechanisms by means of 66 

which the bacteria get used to the new environment or how is the inhibiting growth process. 67 

A biological interpretation of the lag phase based on a physiological state concept was achieved 68 

by incorporation of parameters in a model (Baranyi and Roberts, 1994) which is simple to use, 69 

can be used under dynamic conditions, have good fitting capacity and as mentioned before, the 70 

parameters have biological meaning (Isabelle and Andre, 2006). Other models have been 71 

proposed with similar results which include a heterogeneous population of cells in two phases; 72 

no growth and growth; despite their good results they are more difficult to apply (McKellar, 73 

1997, McKellar and Lu, 2003). Heterogeneous population has also been modeled using a 74 

deterministic approach, which partially describe part of the whole growth curve (Baranyi 1998; 75 

Baranyi 2010). 76 

In the case of simultaneous growth of the interacting bacteria, primary models have been 77 

applied (Gimenez and Dalagard, 2004) for LM and LAB with the same limitations of the 78 

empirical models which do not describe the growth mechanisms for each phase nor the 79 

inhibiting process functions. 80 

This inhibition mechanisms have been incorporated in the simultaneous growth of 81 

staphylococcus aureus and LAB (Le Marc et al., 2009), as an interacting parameter related to 82 
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the population of LAB adapting the models of Baranyi and Roberts (1994) and Gimenez and 83 

Dalgard (2004). However, the inhibition is associated with the metabolites (acids and 84 

bacteriocins) they produce and not directly with the population.  85 

In addition, models do not provide biologically based mechanisms for the growth inhibition of 86 

the target bacteria (Van Impe et al., 2005; Poschet et al., 2005). Models applied to the 87 

simultaneous growth of LM and LAB including inhibition growth were based on the privation 88 

of nutrients on the substrate or the accumulation of metabolites (Van Impe et al., 2005). These 89 

models are very flexible, can be applied to the growth of more than one bacteria, have good 90 

fitting capacity and the parameters have biological interpretation. However, the inhibiting 91 

function does not provide a biological interpretation of the process or mechanisms.  92 

At present the effort in modeling is oriented towards extrapolation of results beyond 93 

experiments to predict growth of interacting microorganisms in order to develop new food 94 

preservation processes.  95 

In the present report two primary models are proposed to describe the growth of 96 

microorganisms for one species alone or two interacting species. The models are based on the 97 

deterministic model due to Baranyi (1998) with the incorporation of an inhibition mechanism 98 

based on series-parallels reactions (Ross et al., 2005). The results are compared with those 99 

published in the literature on the interacting Listeria monocytogenes and LAB. 100 

 101 

 102 

2. Model Formulation and Equations  103 

 104 

Two models are proposed for the growth of one kind of bacteria and then applied for two kinds 105 

of interacting bacteria. The difference between the models is the degree of heterogeneity of the 106 

population. In the first model or Model I, the bacteria are assumed to be in either one of the two 107 

phases; no growth or exponential growth. In addition, a second classification is based on the 108 

dynamic state of the bacteria in which only two states are considered:  growth and no-growth 109 

states. In Model I the two states are similar to the phases. This distinction becomes relevant in 110 
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the case of modeling with more than two phases as in the following model. The second model 111 

or Model II, considers three phases; lag, exponential growth and stationary phases. The lag and 112 

the stationary phases correspond to the no-growth dynamic phase. Both models are 113 

schematically shown in Figure 1. The bacteria can go just once from the lag to the exponential 114 

growth phase in an irreversible way, when there are favorable conditions to grow.  In addition, 115 

when the concentration of metabolites is high enough the bacteria may go from the exponential 116 

growth phase to the stationary phase in the no growth phase and remain there until the end of 117 

the simulation.  118 

 119 

 120 

Figure 1. Schematic representation of bacteria population and transitions in each model. States 121 

in dashed line and phases in solid lines. 122 

 123 

 124 

2.1 Model I 125 

 126 

In this model the total population of cells is heterogeneous and composed of some cells in the 127 

no growth phase and others in the exponential growth phase. The transition from no growth to 128 

the growth phase occurs due to the physiological state and ambient conditions. This transition 129 

can be written in a kinetic equation as 130 
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               (1) 131 

Where     and      are the concentration of cells in the no growth and growth phases, 132 

respectively; and    is the transition rate from the no growth to the growth phase. 133 

Once the cells are in the growth phase, they start to ingest nutrients in order to multiply 134 

themselves. In the multiplication process and as a result of the cell division some metabolites 135 

are produced and delivered to the environment. 136 

The kinetic equation for the combined process can be written as  137 

      

  

                      (2) 138 

Where   is the amount of nutrient consumed by the cell,    is the metabolite produced by the 139 

cells and    is the rate of reaction division process. 140 

Most of the reports in the literature consider that the amount of nutrients is limited without 141 

renewal as in the case of microorganisms growing in food. In this case growing is a transient 142 

state where there is an accumulation of metabolites as by-products, which may be the key factor 143 

that stop the growth before the lack of nutrient can affect  bacteria multiplication.  144 

So, the metabolites may inhibit growth of bacteria (Van Impe et al., 2005) which affect the 145 

growth rate producing a phase change from growth to no growth. This change can be described 146 

by the following rate equation 147 

       
  

                (3) 148 

Where    is the phase transition rate.  149 

The set of differential equations which describe the growth kinetics of the bacteria for the 150 

growth and no growth phases, the production of metabolites and the effect on the bacteria are as 151 

follows 152 

       

  
            

  
       (4) 153 

        

  
                    

  
      (5) 154 

        

  
 

 

 

      

  
        (6) 155 
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      (7) 156 

        

  
             

                  (8) 157 

       

  
            

                  (9) 158 

Where equation (4) is the kinetic differential equation of the reaction equation (1), in similar 159 

way equation (5) corresponds to the reaction equation (2) and equation (8) is associated to the 160 

reaction equation (3), for the transition from the growth phase to the no growth phase and 161 

equation (9) is the opposite, accounting for the transition of cells to the no growth phase. 162 

Equation (6) is the differential equation associated with the production of metabolites in the 163 

exponential phase following equation (2) which can be written as equation (7) by using 164 

equation(5). 165 

 166 

Table 1. The full set of parameters and initial conditions 167 

Parameter Description Parameter Description 

   Reaction order of               Initial condition   

   Reaction order of           Initial condition 

   Reaction order of                 Initial condition 

   Reaction order of                Initial condition 

   Reaction order of           Division reaction rate 

  Stoichiometric coefficient of       phase transition rate 

     phase transition rate 

 168 

The resultant set of equations (4-9) contains a total of 9 parameters and 4 initial condition, one 169 

per each state variable, as listed in Table 1. This number can be reduced to 4 making the 170 

following assumptions: 171 

i. The exponents    are equal to one 172 
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ii. The amount of nutrients is large enough to consider there is no change with time and 173 

therefore a new kinetic parameter can be defined as:           174 

iii. The absolute amount of metabolite given by the variable        is replaced by a 175 

relative amount of metabolite                  . 176 

iv. The initial population consists of bacteria in the no growth phase, only. 177 

v. Associated with assumption iv), the initial concentration of metabolite is small enough 178 

to be considered negligible. 179 

With the assumption i)-v), equations 4-9 are reduced to the following system of equations and 180 

initial conditions: 181 

       

  
                                (10) 182 

        

  
                                        (11) 183 

      

  
                  (12) 184 

                  (13) 185 

                  (14) 186 

                (15) 187 

That is;  3 differential equation 10-12, including 3 parameters and 3 initial conditions 13-15, but 188 

only one (13) to be specified, as follows: 189 

  : the initial concentration of bacteria; 190 

  : the transition rate of bacteria from the no growth to the exponential phase;  191 

  : the growth rate of bacteria in the exponential phase; 192 

  : the inhibition rate for bacterial growth due to metabolites. 193 

 194 

 195 

2.2 Model II 196 

 197 
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In this model three phases are considered; lag, exponential growth and stationary. When the 198 

conditions are favorable to grow the bacteria in the lag state of the no growth phase can move to 199 

the growth phase in an irreversible way; that is, they cannot go back to the lag phase. However, 200 

once in the growth phase and when the concentration of metabolites is high enough the bacteria 201 

may go to the stationary phase. Moving to the stationary phase is irreversible and therefore they 202 

stay in this phase until the end of the simulation, considering that a bacteria death phase is not 203 

included in this model. Therefore, this model uses the following kinetic equations to describe 204 

the transition between phase of a heterogeneous population and cell division. 205 

    

  

               (16) 206 

      

  

                      (17) 207 

       
  

                (18) 208 

 209 

Where     ,      and     are the concentration of cells in lag, exponential and stationary 210 

phases respectively. 211 

The set of equation for this model can be written as the following differential equations 17-24, 212 

including the initial conditions  213 

        

  
                   (17) 214 

        

  
                                         (18) 215 

      

  
                  (19) 216 

       

  
                        (20) 217 

                   (21) 218 

                  (22) 219 

                (23) 220 

                 (24) 221 
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It is noted that each set of equations 10-15 and 17-24 correspond to two different models for one 222 

species in specific environments and assumptions about behavior. However, they can be 223 

extended to two species which may be competing in different ways. Next both model 224 

approaches are extended to the growth of LAB and LM in the same broth.  225 

 226 

 227 

2.3 Mathematical model for LAB and LM 228 

 229 

As mentioned above the growth of LAB and LM has been modeled by different authors 230 

(Gimenez & Dalgaard, 2004; Cornu et al., 2011; Mejlholm & Dalgaard, 2015). In general, LAB 231 

and LM are assumed to grow in a same nutrient and produce their own metabolites which may 232 

inhibit the growth of the other species. However, the effect of the metabolites produced by LAB 233 

has a stronger effect in LM than the inverse case, and therefore is the growth of LAB that 234 

inhibits the growth of LM and not the other way. Therefore it may be assumed that the 235 

metabolites of the LM has negligible effect on LAB and may be neglected in the model 236 

(Mejlholm & Dalgaard, 2015). 237 

In the case of the Model I, when applied to the growth of LAB and LM in the same broth, and 238 

neglecting the production and effect of metabolites produced by LM on LAB. The ruling 239 

equations for both models can be written as follows, including the initial conditions:  240 

 241 

 242 

2.3.1 Model I 243 

 244 

         

  
                                         (25) 245 

          

  
                                                    (26) 246 

        

  
                      (27) 247 
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                                     (28) 248 

         

  
                                              (29) 249 

 250 

Initial conditions 251 

 252 

                       (30) 253 

                    (31) 254 

                  (32) 255 

                     (33) 256 

                   (34) 257 

 258 

 259 

2.3.2 Model II 260 

 261 

          

  
                      (35) 262 

          

  
                                                    (36) 263 

        

  
                      (37) 264 

         

  
                             (38) 265 

         

  
                    (39) 266 

         

  
                                               (40) 267 

        

  
                            (41) 268 

 269 

Initial conditions 270 

 271 

                        (42) 272 
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                    (43) 273 

                  (44) 274 

                   (45) 275 

                      (46) 276 

                   (47) 277 

                  (48) 278 

 279 

 280 

2.4 Methods of solution 281 

 282 

Each set of equation 25-34 and 35-48 are systems of first order nonlinear ordinary differential 283 

equations which are solved applying numerical methods of solutions using the Wolfram 284 

Mathematical 9.0 software package. For each species of microorganisms there are four 285 

parameters which must be determined as follows:                      ,       286 

           . 287 

In order to determine the 8 parameters it is used a genetic algorithm of the type NSGA 2 (Deb et 288 

al. 2002), which minimizes simultaneously the square errors (SE) between the experimental and 289 

calculated values of the growth curves, as described in previous reports. (Pedrozo et al., 2015a; 290 

Pedrozo et al., 2015b). 291 

 292 

 293 

3. Results 294 

 295 

3.1 The genetic algorithm  296 

 297 

In order to compare the results between models I and II the results of each model were best 298 

fitted with the experimental data of specific population evolution of the interacting LAB 299 
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(Tas5612, Tas5610) and LM species (Tas5611, Tas5609) obtained from Combase 300 

(www.combase.cc) and produced in the Tasmanian Institute of Agriculture (Australia). 301 

 302 

Table 2. Results of fit for model I and model II 303 

  Model I Model II 

Parameters Units Figure 1a Figure 1b Figure 2a Figure 2b 

     (h
-1

) 0.1441 0.1597 0.1326 0.1660 

     Log (h
-1

) -0.9422 -2.2967 -0.7035 -2.4522 

     Log(mL CFU
-1 

h
-1

) -8.5445 -7.6581 -9.5161 -7.8135 

     Log(CFU/mL) 3.19 3.05 5.9148 3.15 

    (h
-1

) 0.0940 0.1023 0.0956 0.0879 

    Log (h
-1

) -1.7481 -2.7619 -1.7141 -2.4997 

    Log(mL CFU
-1 

h
-1

) -8.8571 -8.2124 -8.9889 -8.5011 

    Log(CFU/mL) 2.84 2.96 6.3815 2.78 

 304 

 305 

3.1.1 Results of Model I 306 

 307 

The results of the model I and the referred experimental data for the concentrations of LAB and 308 

LM are shown in Figure 2. The parameters in each case were determined using the genetic 309 

algorithm described above. In Figures 2a and 2b, it can be clearly distinguished the no growth 310 

and growth phases and the smooth transitions obtained with the model. These results using two 311 

different experimental results are a  test, in particular of the assumptions with respect to both; 312 

the correctness of the simplification made on the differential equations and on the other hand, 313 

the good performance of the inhibition term for the growth of LM, as proportional to the 314 

concentration of metabolites produces by the LAB. It is noted the low quadratic errors for the 315 
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LM of around 0.25 for the first case in Figure 2a and 0.26 for the second case in Figure 3a, and 316 

also for the case of LAB of 0.22 in Figures 1a and 1.27 Figures 2a.  317 

 318 

 319 

 320 

Figure 2. Growth curves fitted with model I. a) LAB Tas5612 and LM Tas5611, b) LAB 321 

Tas5610 and LM Tas5609 322 

  323 

If instead of the total concentration of bacteria in each phase; the concentrations of the no 324 

growth and growth phase are considered, the evolution is as follows. In the case of lactic acid 325 

bacteria the concentration in the no growth and growth phases are as shown in Figure 3a 326 

(Tas5612) and 3b (Tas5610) for each set of experimental data considered. In Figure 3a the 327 

concentration of LAB in the no growth phase decreases during the first 30 hours and after this it 328 

increases with a high slope up to the 90 hours and then it slowly grows until the end of the 329 

simulation time at 200 hours. The initial lag time is relatively short and is the results of the 330 

relatively large value of      responsible of the initial growth step. At about 30 h the 331 

exponential growth of the cells in the no growth phase would be associated to the increasing 332 

concentration of metabolites inhibiting their growth which decreases after 90 hours. 333 

 334 
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 335 

Figure 3: Dynamic behavior of no growth and growth phases predicted with model I. a) LAB 336 

Tas5612, b) LAB Tas5610. 337 

 338 

In the case of the LAB in the growth phase, in the Figure 3a it is observed that the growth rate is 339 

very high up to a time of 80 h where the concentration achieves a maximum value near 10
8 340 

CFU/ml and then there is a sharp but small change of slope to a negative value for the 341 

remaining time of the simulation period in which the concentration decreases to 10
7.5 

CFU/mL 342 

in the next 140 h.  343 

It is noted that in the exponential growth phase the cell concentration does not tend to zero but 344 

tends to a high constant value. This pseudo asymptotic behavior is attributed to the effect of:  i) 345 

the kinetic equation (1) which produce a constant rate of transfer of bacteria from the no growth 346 

to the growth phase; ii) the kinetic equation (3) which provide a constant rate of production of 347 

cells in the no growth phase due to the increase in the concentration of metabolites and iii) the 348 

absence of a kinetic of death of bacteria. 349 

On the other hand, the evolution of lactic acid bacteria in the no growth and growth phases for 350 

the conditions corresponding to Figure 2b for the second set of experimental values are as 351 

follows. The lactic acid bacteria concentration in the no growth phase smoothly decreases up to 352 

45 h and then start to grow exponentially for the next 35 h and after this the concentration 353 

remains practically unchanged showing a strong inhibition effect. It is observed an initial slow 354 

decrease comparing to the evolution of Figure 3a where there is a strong initial decrease. This 355 

difference is associated to a smaller value of      in the results shown in Figure 2b, with 356 
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respect to the      value listed in Table 2, in the growth conditions resulting in Figure 2a. The 357 

exponential change of this phase near 45 h is due to the considerably increase of the 358 

concentration of metabolites, producing a high rate transition from growth to no growth phase 359 

(eq. 9). 360 

Comparing now the evolution of bacteria in the growth phase in Figure 3b with respect to that in 361 

Figure 3a, it is observed that the evolutions are similar up to the time of 80 h when both reach 362 

maximum values, however in Figure 3b after the maximum is reached it starts to decrease with 363 

a larger rate or slope and then at about 100 h stabilizes at a constant values of about 10
6.5

 364 

CFU/ml. This could also be attributed to a smaller value of the rate     . 365 

 366 

 367 

3.1.2 Results of Model II 368 

 369 

The results of model II applied to the same two experimental growth results used for Model I; a) 370 

LAB Tas5612 and LM Tas5611 and b) LAB Tas5610 and LM Tas5609, are shown in Figure 4a 371 

and 4b. In Figure 3a the best fit show quadratic errors of 0.4467 for LAB and 0.3041 for LM. 372 

The slight larger errors could be associated to the less smooth transition from the exponential to 373 

the stationary phase as compared to the case of Model I. The results in Figure 4b show a larger 374 

quadratic error for the case of the LAB of 1.3799 as in the case of Model I which is associated 375 

to the large noise in the experimental data as can be seen in Figure 4b. For the case of the LM 376 

there is a better fitting with a small quadratic error of 0.2792. 377 

 378 
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 379 

Figure 4: Growth curves fitted with model II. a) LAB Tas5612 and LM Tas5611, b) LAB 380 

Tas5610 and LM Tas5609 381 

 382 

When the concentration of lactic bacteria in each phase is considered, the results are as observed 383 

in Figure 5a and 5b. 384 

 In this model there are three phases, lag, exponential and stationary. In the first case of 385 

Figure 5a it is observed that the BAL sharply decreases in 40 h to a negligible value. The 386 

different behavior respect to Model I is the existence of two phases to describe the no growth 387 

behavior in addition to the exponential phase to which the bacteria from the lag phase can go 388 

depleting the concentration of the bacteria in the lag phase in 40 h. The cells in the exponential 389 

phase start to grow from the beginning at a high rate from about 10
2.5 

to 10
8
 CFU/mL in about 390 

100 h reaching the maximum concentration and sharply decreasing to the initial concentration in 391 

the following next period of time of 100 h. This behavior could be closer to the real situation 392 

considering that cells in the exponential phase should disappear at long time. The cell in the 393 

stationary phase starts to appear soon in the calculations after 40 h of modeling time. Then the 394 

concentration increases at a high exponential rate in the following 60 h and then the rate slows 395 

down sharply to a negligible grow rate that remains to the end of the simulation. The evolution 396 

of the concentration in lag and exponential phases indicate that for longer periods of time all the 397 

cells will be in the stationary phase.  398 

The results for running conditions b are shown in Figure 5b. In the first case, the lag phase 399 

shows a very slow growth rate in agreement with the long growing time in the lag phase 400 
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observed in Figure 4b, consistent with the small value of the rate parameter     . The behavior 401 

of the exponential phase is similar to that observed in Figure 5a, showing a sharp increase to a 402 

maximum at 85 h and then a symmetric decrease to the initial concentration taking 403 

approximately 85 h each step, instead of 100 h as in the first case of Figure 5a. The same pattern 404 

in the evolution in both running cases is consistent with what is expected of a decrease in the 405 

growth due to the constant production of metabolites. 406 

The evolution of the cells in the stationary phase is similar to that shown in Figure 5a, with cells 407 

starting to appear after 40 h of model running time, growing exponentially in the following 35 h 408 

and decreasing the growth rate to a negligible value due to the depletion of cells in the 409 

exponential phase. After 100 h, the cells in the stationary phase remains constant to the end of 410 

the simulation. 411 

 412 

 413 

Figure 5: Dynamic behavior of lag, exponential and stationary phases. a) LAB Tas5612, b) LAB 414 

Tas5610 415 

 416 

 417 

3.2 Comparison of errors among models 418 

 419 

In order to determine the fitting capacity of the different models whose results were presented 420 

and analyzed in the previous section, the square correlation coefficient between the 421 

experimental data and the different curves obtained with each model were calculated (Table 3). 422 
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In addition, these values of square correlation coefficient are compared with model results 423 

reported in the literature (Baranyi and Roberts, 1994) for the same experimental data. From the 424 

values of errors in Table 3 it is observed that model II and the Baranyi and Roberts model fit the 425 

experimental data with similar quality. Moreover, the best fitting is given by model I with the 426 

lowest errors. It is noted that the numerical effort and mathematical complexity results low and 427 

similar for these three models since they use only 4 parameters. 428 

From the biological point of view and considering that in Model I the concentration of cells in 429 

the exponential phase cannot be zero at any time, this model predicts a constant growth which 430 

rate decreases with time. On the other hand, Model II predicts a cell growth in the exponential 431 

phase reaching a maximum population and then decreasing monotonically, at the same time all 432 

the cells go to the stationary phase which may be attributed to the resulting high concentration 433 

of metabolites. Therefore, from this analysis, it may be concluded that comparing the Models I 434 

and II, the first produce a better fitting however Model II produce results which have a 435 

biological interpretation closer to what it may be expected due to the interaction between the  436 

LAB and LM. 437 

 438 

Table 3. Square correlation coefficient (R
2
) for proposed models and Baranyi and Roberts 439 

model 440 

 

R
2
 

Data set Model I Model II Baranyi and Roberts (1994) 

LAB Tas5612 0.9958 0.9900 0.986 

LM Tas5611 0.9826 0.9779 0.970 

LAB Tas5610 0.9499 0.9468 0.912 

LM Tas5609 0.9727 0.9698 0.962 

 441 

 442 

 443 

4. Summary and conclusions 444 
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 445 

Two different mechanistic models which describe the growth of two interacting bacteria such as 446 

BAL and LM are developed, which include two new inhibition functions based on kinetic 447 

reactions among the cells coexisting in different phases at the same time. Both bacteria grow in 448 

the same medium. The models were applied to data available in the literature (Tasmania 449 

Institute) and the main conclusions are: 450 

– In Model I the cells can be in only two phases; no growth and growth, and the transition 451 

from one to other is reversible. 452 

– In Model II the cells can be in three phases lag, exponential and stationary and the transition 453 

from one to the other is irreversible, that is these cells which pass to the new stationary phase 454 

remains there to the end of the simulation since there is no dead phase. 455 

Model I fits better with the experimental results, however model II provide results with 456 

biological meaning. As a result model I provide better data interpolation predictions of the data 457 

and on the other hand, Model II may be more useful and reliable for extrapolation of the results. 458 

Both models are easy to handle in order to introduce other kinetic reactions which may be 459 

considered important for the case under study. For instance, a death kinetic of bacteria in the lag 460 

or stationary phase accounting for the effect in the growth curves of the microorganisms. 461 

 462 

 463 
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