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Abstract 14 

 15 

Predictive microbiology is nowadays one of the main tools to understand microbial interactions 16 

and to assess the quantitative risk in foods. Several models have been developed in order to 17 

predict microorganism growth. The resulting model equations for the growth of interacting 18 

microorganisms include a number of parameters which must be determined for the specific 19 

conditions to be modeled. The most effective method to determine these parameters is inverse 20 

engineering. When it is required to fit more than one experimental growth curve simultaneously, 21 

the process is more complex since it is necessary to apply a multi-objective optimization 22 

procedure. In the present report a genetic algorithm is presented which is applied to obtain the 23 

best parameter values of a mechanistic model that permit the construction of the front of Pareto 24 

with 50 individuals or phenotypes. The method was applied to the growth of lactic acid 25 

bacteria (LAB) and Listeria monocytogenes, resulting in very low errors of 0.23 and 0.25 for 26 

the LAB and L. monocytogenes between model and experimental values, respectively. The 27 

method is very adequate for application in determining parameter values adjusted by inverse 28 

engineering giving very good results. 29 

 30 

Keywords: predictive microbiology; bacterial interactions; parameter estimation; genetic 31 

algorithm.   32 



1. Introduction 33 

  34 

Growth and occupancy of any microorganism in different ecological niches depend on several 35 

environmental factors as well as the metabolic functions of cohabiting cells, since the 36 

microorganisms in common environment do not typically occur in axenic culture. The presence 37 

of one microorganism often can inhibit or delay the growth of their neighboring cells (negative 38 

interactions) due to consumption of shared resources (competition) or the release of toxic 39 

compounds (inhibitory activity) (Freilich et al., 2011, Stubbendieck et al., 2016). These 40 

interactions between microorganisms are usually used in food technology as a tool to extend the 41 

shelf life of fermented products to which a starter culture may be added. Lactic acid bacteria 42 

(LAB) are starter cultures able to compete with food-borne pathogens and/or food spoilage 43 

bacteria (Vignolo et al., 2012). They produce several inhibitory compounds, which can either be 44 

unspecific metabolites such as acetic acid, phenyllactic acid, indolelactic acid, etc. (Rodríguez-45 

Pazo et al., 2013, Dallagnol et al., 2015) or more complex and specific compounds such as 46 

bacteriocins (Alvarez-Sieiro et al., 2016). In this sense, several works support the effectiveness 47 

of the inhibitory metabolites from LAB for controlling the growth of Listeria (L.) 48 

monocytogenes (Naz et al., 2013; Wemmenhove et al., 2016; Saraoui et al., 2016), being one of 49 

the main pathogen involved in ready-to-eat foods (Williams et al., 2011; Gómez et al., 2015). 50 

In order to understand better the responses of the microorganisms to the key controlling factors 51 

in the food environment, and develop the means to interpolate calculated microbial responses, 52 

emerges the predictive microbiology. This is nowadays one of the main tools to understand 53 

microbial interactions and to assess the quantitative risk in foods (Isabelle and André, 2006; 54 

Pérez-Rodríguez et al., 2013). In this work particularly, LAB behavior and capacity of 55 

inhibiting and/or altering pathogenic bacteria is studied. Several models have been developed in 56 

order to predict microorganism growth, which can be separated in two categories; 57 

phenomenological and mechanistic models. The firsts one are based on observations and 58 

measurements such as the following models: the logistic model (Gibson et al., 1987) which 59 

describes the growth by adjusting the experimental curve using four parameters; the trilinear 60 

model (Buchanan et al., 1997) in which each phase is described by a linear curve; the logistic 61 

model which includes growth delay (Rosso et al., 1996), and also uses four parameters which 62 

provides a good fitting capacity. On the other hand, the most current mechanistic model derived 63 

to describe the growth of microorganisms was developed by Baranyi and Roberts (1994).  64 

An earlier work to describemicrobial interaction was based on the Lokta-Volterra model for two 65 

species in competition (Vereecken, et al 2000). Then, the logistic model was modified by 66 

Gimenez and Dalgaard (2004) to model the growth of interacting microorganisms growing in 67 

the same culture media and based on models of competing species. Later, Le Marc extended the 68 



model (Le Marc et al., 2009), including a new parameter, the critical population density in 69 

which one of the species (lactic acid bacteria) inhibits the growth of other microorganisms. 70 

The resulting model equations for the growth of interacting microorganisms include a number 71 

of parameters which must be determined for the specific conditions to be modeled. The most 72 

effective method to determine these parameters is inverse engineering. However, when it is 73 

required to fit more than one experimental growth curve simultaneously, the process is more 74 

complex; since in order to obtain the values it is necessary to apply a multi-objective 75 

optimization procedure. In this way, the whole growth parameters are estimated simultaneously, 76 

which may have better results than sequential parameters estimation (Van Der Linden, et al. 77 

2010). 78 

A typical method to simplify this kind of problems consists on assuming that the effect of one 79 

microorganism is negligible for the growth of the other. Thereby it is possible to fit one growth 80 

curve, and then, with the information obtained from the last step, it is possible to fit the growth 81 

curve of the other microorganism, whose growth is affected by the other microorganism. 82 

However, with this procedure suboptimal results may be obtained due to the fact that it is 83 

assumed that the growth of one microorganism is not perturbed by the presence of the other; 84 

and if the growth curve, that is fitted first, presents high experimental errors, the parameters 85 

obtained for the second curve will present high errors too, despite the fact that the second curve 86 

may have less experimental errors. 87 

In the present report a genetic algorithm is presented which is applied to obtain the best 88 

parameter values of the mechanistic model developed by Baranyi and Roberts (1994) and 89 

modified by Le Marc et al. (2009). The algorithm is applied to the growth of interacting LAB 90 

with L. monocytogenes, and the results are presented and analyzed. 91 

  92 

2. Material and methods 93 

 94 

2.1. The Model Equations 95 

 96 

The following set of equations were used to model the growth of LAB and L. monocytogenes 97 

(Le Marc et al., 2009):  98 

 99 
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  (1.c) 104 
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Subject to the following initial condition: 108 
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        (1.e) 110 

 111 

Where the variables are: 112 

 113 

LAB[t]: concentration of LAB at time t; 114 

LM[t]: concentration of LM (L. monocytogenes) at time t; 115 

Q
LAB

[t]: physiological state of LAB at time t; 116 

Q
LM

[t]: physiological state of L. monocytogenes at time t; 117 

And the parameters are: 118 

µmax
LAB

 : maximum growth rate of LAB; 119 

µmax
LM

 : maximum growth rate of L. monocytogenes; 120 

LABmax: maximum concentration of LAB compatible with the given substrate; 121 

LMmax: maximum concentration of L. monocytogenes compatible with the given substrate; 122 

LABCPD: threshold concentration of LAB inhibiting growth of LM; 123 

lag
LAB

: delay time for LAB; 124 

lag
LM

: delay time for L. monocytogenes; 125 

    : initial microbial load of Lactic acid bacteria; 126 

   : initial microbial load of L. monocytogenes; 127 

 128 

 129 

superscript i represents the set LAB, LM. 130 

 131 

Each term in the equations represents the following: 132 

 133 

     

       
: 134 

 135 

This is a factor introduced by Baranyi and Roberts (1994) to correct the growth curve due to the 136 

lag phase in a mechanistic way. At low times, the value of the physiological state is near one, so 137 

the growth is slower; for higher times the physiological state is larger than one. As time 138 



increases, this factor tends to one and represents the stage in which most of bacteria have 139 

changed to an exponential phase. 140 

 141 

   
    

    
 : 142 

 143 

This is a factor to model the transition from the exponential to the stationary phase. At low 144 

times, its value is near one; for higher times this factor tends to zero and the growth is 145 

negligible. 146 

 147 

   
    

    
 : 148 

 149 

This is a factor to model the competition intra-species in co-culture. When the concentration of 150 

species i is near     , the effect of inhibition becomes important. For L. monocytogenes, it is 151 

assumed that             . 152 

In order to solve equation (1), Wolfram Mathematica 9.0 was used. In particular, the differential 153 

ordinary equations systems were solved with a commad “NDSolve” inside the software, and a 154 

Runge-Kutta 4-5 was set as solver.  155 

 156 

2.2. The Genetic Algorithm for Selecting Parameter Values 157 

 158 

The basic process to determine the values of the parameters is based on selecting those which 159 

best fit the model solutions with the experimental results. In such case there are always 160 

differences between the model and the experimental results which are called residues. The 161 

regression method widely used to find the parameter values that best fit the experimental with 162 

the model results consist on minimizing the squared error, which in the present case is the sum 163 

of the square of all residues. Considering the complexity of the differential equations (1), it is 164 

necessary to use non-conventional methods in order to find the values of the parameters that 165 

minimize the squared error (McKellar and Lu, 2003). 166 

On the other hand, the squared error for both curves must be minimized simultaneously, so it is 167 

a multi-objective optimization problem. The most common method applied to solve this 168 

problem consists on transforming, by a suitable combination, the set of objectives in only one 169 

objective through a weighed addition method. In this method, the new objective function is the 170 

sum of each objective with a given weight determined by the user and related to the specific 171 

problem. In particular, in the present report the criterion proposed by Sun and Li (2014) is 172 

adopted in which the new objective function ϕ can be written as: 173 

 174 
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  (2.b) 177 

 178 

Where,    is the weight of each objective;     y      are the experimental and calculated data, 179 

respectively, of the concentration of bacteria i at the experimental point j;      is the number of 180 

experimental points. The values assigned to the weights   , are the inverse of the elements of 181 

the main diagonal of the covariance matrix of the errors. 182 

Due to the non-linearity of the differential equations 1 (a-d) and the objective function 2 (a-b), 183 

for convergence of the solutions using conventional optimization methods as the Newton-like 184 

methods, good initial values of the state variables and the parameters are required. Otherwise, 185 

the solution method may fail in finding global solutions and converge to local minimum 186 

(Rangaiah and Bonilla-Petriciolet, 2013). 187 

In addition, minimizing the objective function 2a indirectly may increase the probability of 188 

missing some optimal solutions in the case of integrated objective functions, which show a 189 

duality gap due to non-convexity (Silva and Biscaia, 2003). In such case, rather than obtaining a 190 

unique solution, multi-objective optimization provides a family of solutions, which is called 191 

Pareto-optimal set. This set is built with all vector solutions, which improve at least in one of 192 

the objectives without degrading the values of the other objectives. Each vector solution 193 

included in the Pareto-optimal set is called non-dominated solution. The image of Pareto-194 

optimal set is called Pareto front (Abraham and Jain, 2005). 195 

In the present work, the Pareto front is obtained employing a genetic algorithm. This kind of 196 

algorithm have been applied to solve optimization problems (Silva and Biscaia, 2003; Meneses 197 

and Echeverri, 2007 ; Din et al, 2016) giving very good results. Genetic algorithms are based on 198 

biological evolution as the conceptual framework for their search process and they consists on 199 

representing the set of adjusting parameters (the phenotype) by a binary chain (genotype). The 200 

squared errors for the phenotypes are evaluated (Figure 1) and the best or more suitable genes 201 

are determined and selected, as well as the direction of evolution towards better individuals.  202 

The starting population of individuals is random, and their genotypes are subjected to operations 203 

of selection, crossover (with crossover probability) and mutation (with mutation probability) in 204 

order to duplicate the number of individuals. The best individuals are selected to belong to the 205 

next generation by means of an elitist algorithm of the type NSGA II (Deb et al., 2002) as 206 

illustrated in Figure 2. 207 

The population is classified through an elitist algorithm (Deb et al., 2002). The classification by 208 

ranks is as follows: Rank 1 is assigned to non-dominated individuals of whole population, then 209 



these individuals are removed from the population, and rank 2 is assigned to non-dominated 210 

individuals of the residual population. This procedure continues until every individual gets a 211 

rank.  212 

Apart from the rank of each individual, there may be a second criteria for the selection of the 213 

best individuals. In the elitist algorithm NSGA II (Deb et al., 2002), this criteria is based on the 214 

crowd distance, which is an index to keep the diversity of results and to avoid the convergence 215 

of all individuals to a cluster solution. In the present problem, a cluster solution with near zero 216 

squared error for both curves is desired, in such case the crowd distance was substituted for the 217 

Euclidean distance of the objectives to the origin. At first the crowd distance was established as 218 

second criteria, but preliminary results of this research proved that good solution near the origin 219 

may disappear, due to its low crowd distance, when all individuals have rank 1. 220 

The mating selection is done through a tournament where two individuals are selected 221 

randomly, their rank and their origin distance are compared (lower rank is selected; in case of 222 

the same rank, lower origin distance is selected), and the best individuals are chosen. With the 223 

selected individuals from the previous step, couples of them are generated randomly. Then, for 224 

each couple a random number between 0 and 1 is generated, if this number is less than the 225 

crossover probability, a piece of their genotype is exchanged randomly (Figure 3). Then for 226 

each individual of the last stage and for each of their genes a random number between 0 and 1 is 227 

generated, if this number is less than the mutation probability, its gene changes (Figure 3). 228 

In order to pass to the next generation, the whole population must be reduced to the initial 229 

number, therefore a selection operation is applied through the comparison among the ranks and 230 

their origin distances. Lower rank individuals are selected, and in case they have the same rank, 231 

lower origin distances are selected.  232 

It is necessary to select a convergence criteria to decide when the search is stopped. Different 233 

option of this may be chose, like the maximum number of iteration (Din, et al. 2016) or 234 

minimum convergence speed (Silva and Biscaia, 2003). In this work such criteria is as follow: If 235 

no better solutions appear after 10 iterations of the algorithm, the search is ended. 236 

 237 

2.3. Monte-Carlo analysis 238 

In order to determinate the uncertainty of the fitted parameters obtained by means, the proposed 239 

algorithm Monte-Carlo analysis was applied (Poschet et al., 2003). In addition, the Monte-Carlo 240 

analysis was used to compare multi-objective optimization and the conventional fit.  241 

The conventional fit was applied as follow: the effect of inhibition of L.  monocytogenes is 242 

neglected towards the lactic acid bacteria, then it is possible to get the parameters of lactic 243 

bacteria growth by means of a regression method. Then with this set of parameters, the growth 244 

curve of L.  monocytogenes is fitted using equation 1.c and 1.d. In this case, the algorithm used 245 



for minimizing the squared errors in the regression method was the proposed genetic algorithm, 246 

but with mono-objective function.  247 

For each algorithm, Monte Carlo simulation was performed using 3000 runs. Then, the mean 248 

and standard deviation (SD) of each parameter is calculated and the results of each model are 249 

compared. 250 

 251 

3. Results and discussion  252 

 253 

"The regression method described above was applied to specific population evolution of the 254 

interacting LAB and Listeria  monocytogenes species (Tas5611, Tas5612) obtained from 255 

Combase (www.combase.cc) and produced in the Tasmanian Institute of Agriculture 256 

(Australia)." 257 

The iteration process applied in the present report, starts with a population of individuals with 258 

large initial squared errors that with the successive iterations decreases to acceptable values. An 259 

example of this kind of simulation is showed in Figure 4. At generation zero the best solution 260 

presents high SE of the order of 6 and 8 for LAB and L. monocytogenes respectively, but for the 261 

thirtieth generation, the errors diminished below 1 for both bacteria.  262 

The evolution of parameters to give better solutions is shown in Table 1 for another simulation. 263 

In this table, the best individual is chosen by the criteria described above, and its parameters are 264 

shown for different simulations. The evolution direction of parameters is not trivial since the 265 

targets (squared errors) are complex functions of them. At the ultimate iteration, each individual 266 

belongs to Pareto-optimal set and many of them are locally optimal solutions of the problem. 267 

The best solution is chosen using the objective function (2.a), in this case, it presents SE of 0.23 268 

and 0.25 for LAB and L. monocytogenes respectively.  269 

 270 

Table 1. Parameters evolution 271 

  Iteration 

  Units 0 10 100 Ultimate 

    
    (h-1) 0.1856 0.1522 0.1499 0.1497 

       Log10(CFU/ml) 9.3664 8.9458 9.1783 9.3752 

       (h) 15.1270 8.8544 7.4621 6.5843 

     Log10(CFU/ml) 2.6988 3.1111 3.1380 3.089 

    
   (h-1) 0.0630 0.0953 0.0971 0.1027 

      Log10(CFU/ml) 5.9964 6,0707 5,8069 5,8284 

      (h) 25.298 10.9648 17.4279 21.0400 

    Log10(CFU/ml) 2.9638 2.6473 2.7220 2.7858 

       Log10(CFU/ml) 9.1969 8.7812 8,8242 8.7905 

SE BAL 
 

3.3357 0.3275 0.2451 0.2307 



SE LM 
 

10.7725 0.5115 0.2539 0.2500 

 272 

With this population the front of Pareto is built. At the end of the search, in order to choose 273 

good individuals the objective function is calculated using equation 2. The best individuals are 274 

those with the smallest objective functions. The set of parameter values of the governing 275 

equation, represented by this individual or phenotype, is used to solve the governing equations 276 

1(a-d). Then, the evolution of the interacting bacteria populations are plotted and compared with 277 

the experimental results. 278 

A front of Pareto built from an initial population of 50 individuals and employing the genetic 279 

algorithm described here is shown in Figure 5. The crossover probability and mutation 280 

probability were fixed in 90 % and 4 %, respectively. This front is obtained in the 251-th 281 

generation of individuals, which after each generation gives a lower error and converges to a 282 

given point in the front. The coordinates in Figure 5 are the squared errors for each bacteria. In 283 

this front, each point represents the squared error of each phenotype when used as parameters in 284 

the governing Equation 1. Each of the 50 phenotypes in the front of Pareto are valid solutions; 285 

however the best must be chosen. The criterion employed in the present report, as described 286 

before, is based in the calculation of the target function defined in equation 2.a. The results are 287 

shown in Figure 6.  288 

On other hand, many other individuals have objective function values close to 0.24, being the 289 

first individual in Figure 6 the one with the smallest weighted error. If this individual or 290 

phenotype is chosen as the set of parameter values to be input in the governing equation, the 291 

results of the evolution model for both interacting bacteria are represented in Figure 7. The full 292 

lines are the model results and the points are the experimental results obtained from the 293 

literature (Tasmanian Institute of Agriculture). It can be concluded that there is a very good 294 

fitting between model and experimental results with a squared error of 0.23 for the L and of 295 

0.25 for the L. monocytogenes. Moreover, it shows that the genetic algorithm developed and 296 

presented in this report is adequate and gives very good results. 297 

 298 

3.1 Monte-Carlo simulation 299 

The results of Monte-Carlo analysis are shown in Table 2 Numerical values of the parameters 300 

obtained by using both fit method are similar. Both means values, the standard deviation (SD) 301 

and the average of squared errors (both SE BAL and SE LM) are similar too. However, 302 

conventional fit results may not capture the effect of interacting phenomena. 303 

The critical density population of lactic acid bacteria (      ) is a parameter to quantify the 304 

interaction between bacteria. A numerical value of        higher than        means the 305 

growth of the pathogen is not inhibited by LAB when this bacteria achieves its maximum 306 



density population. This case is obtained by conventional fit, and the calculated average of 307 

       is higher than the average of       . 308 

Instead, multi-objective optimization calculated values of        lower than the average of 309 

      , which means BAL inhibits the growth of the pathogen before it achieves its maximum 310 

density population. Due to the kind of co-culture analyzed, the results obtained by multi-311 

objective optimization captures better the biological behavior. 312 

 313 

Table 2. Monte-Carlo analysis for both fit methods. 314 

  Multi-objective optimization Conventional fit 

  Units Mean SD Mean SD 

    
    (h-1) 0.1513 0.0152 0.1352 0.0109 

       Log10(CFU/ml) 9.3141 0.3917 8.9529 0.1935 

       (h) 7.7645 5.2278 4.7590 4.5665 

     Log10(CFU/ml) 3.1508 0.2308 3.0842 0.4145 

    
   (h-1) 0.0965 0.0152 0.1023 0.0211 

      Log10(CFU/ml) 5.9515 0.2681 5.8589 0.2384 

      (h) 16.555 9.1005 18.8027 9.7552 

    Log10(CFU/ml) 2.7263 0.2116 2.6403 0.3941 

       Log10(CFU/ml) 8.9601 0.3238 9.1596 0.3424 

SE BAL 
 

0.5367 0.2322 0.5312 0.2230 

SE LM 
 

0.5127 0.2246 0.4931 0.2205 

 315 

4. Conclusions 316 

 317 

A coupled ordinary differential equation to describe the growth of interacting microorganisms 318 

method was solved, LAB and L. monocytogenes, using a mechanistic model. The parameters of 319 

the differential equations were determined by inverse engineering using a genetic algorithm that 320 

permits the construction of the front of Pareto: 50 individuals or phenotypes were used to build 321 

the front. The best individuals are chosen minimizing the objective function. The predictions 322 

given by the model results are very close to the experimental values with very low errors of 0.23 323 

and 0.25 for the LAB and L. monocytogenes between model and experimental values.  324 

The Monte-Carlo analysis show that the mean values and standard deviation of parameters 325 

obtained by using conventional and multi-objective fit are similar, but the results of multi-326 

objective optimization describes better the biological behavior in co-culture. 327 

The method is very adequate for application in determining parameter values adjusted by 328 

inverse engineering giving very good results. 329 

 330 
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Figure captions 425 

 426 

Figure 1. Schematic of the process to obtain the attributes of individuals. 427 

Figure 2. Schematic of the generation of a new Population (adapted from Meneses and 428 

Echeverri, 2007). 429 

Figure 3. Crossover and mutation operations (De Castro, 2006). 430 

Figure 4. Pareto Front evolution. 431 

Figure 5. Front of Pareto obtained with an initial population of 50 individuals. 432 

Figure 6. Objective function calculated for 50 hundred individuals using Equation 2. 433 

Figure 7. Experimental and model results produced with the selection of parameters with a 434 

genetic algorithm. 435 
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- Mathematical modeling of LAB and L. monocytogenes growth. 
- Parameter estimation by inverse engineering. 
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