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A B S T R A C T

We present a study of annual forestry harvesting planning considering the risk of compaction generated by the
transit of heavy forestry machinery. Soil compaction is a problem that occurs when the soil loses its natural resis-
tance to resist the movement of machinery, causing the soil to be compacted in excess. This compaction gener-
ates unwanted effects on both the ecosystem and its economic sustainability. Therefore, when the risk of com-
paction is considerable, harvest operations must be stopped, complicating the annual plan and incurring in ex-
cessive costs to alleviate the situation. To incorporate the risk of compaction into the planning process, it is nec-
essary to incorporate the analysis of the soil's hydrological balance, which combines the effect of rainfall and po-
tential evapotranspiration. This requires analyzing the uncertainty of rainfall regimes, for which we propose a
stochastic model under different scenarios. This stochastic model yields better results than the current determin-
istic methods used by lumber companies. Initially, the model is solved analyzing monthly scenarios. Then, we
change to a biweekly model that provides a better representation of the dynamics of the system. While this im-
proves the performance of the model, this new formulation increases the number of scenarios of the stochastic
model. To address this complexity, we apply the Progressive Hedging method, which decomposes the problem in
scenarios, yielding high-quality solutions in reasonable time.

1. Introduction

The last decades have witnessed a growing interest in the sustain-
able management of the exploitation of natural resources (Heinimann,
2007), as for instance in industrial forestry production (Marchi et al.,
2018). One of the most important resources in the latter activities is the
quality of soil (Dominati et al., [2010]; Rahman et al., [2020]). The
concern for its preservation has led to a number of studies on the impact
of forestry on its sustainability (Cambi et al., 2015). The conclusions
and recommendations of those contributions are different according to
the production specificities of different regions of the world (Kimsey et
al., [2011]; García-Carmona et al., [2020]). But all of them share the
conclusion that the quality of soil should be preserved, suffering the
least damage possible (Ampoorter et al., [2010], Okpara et al., [2020];
Okpara et al., [2020]).

The biggest risk for the soil arising in forestry operations is the pos-
sibility of its compaction (Cambi et al., 2015). This happens when the
soil yields to the pressure exerted by harvesting machinery (Page-
Dumroese et al., 2006). Compacted soil affects the natural movement of
fluids (gases and water) and the macroporosity of the edaphic structure
(Ballard, 2000). The higher density induced by compaction depends on
several factors, as for instance its initial apparent density, the size and
distribution of particles, the amount of organic matter, its humidity, the
slope of the terrain, the machinery used, the experience and care of the
operators of the machinery, etc. (Jamshidi et al., [2008]; Cambi et al.,
[2015]). The porosity of the soil, can be reduced 50% or 60% due to the
compaction induced by the use of machinery (Ampoorter et al., 2007),
while the aeration can be reduced up to 50% (Tan et al., 2005). These
effects impact on the natural quality of the soil, reducing its capacity to
sustain vegetation and, in forestry plantations, affect its site index sig-
nificantly (Kimsey et al., 2011). As shown by the field study of Camargo
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Corrêa and Mosquera (2011) the losses in site indexes reached 40% in
plantations of Pinus Taeda.

Several studies aimed to find out how to mitigate the impact of
forestry operations have focused on the contact pressure exerted by ma-
chinery on the soil (Cambi et al., 2015). Among those studies, one
group focused on the resistance of the soil and another on how the ma-
chinery distributes its weight. The former class of investigations seeks
to find methods and strategies to improve the resistance of the soil, rec-
ommending the use of leftovers of the harvest operations to reduce the
contact pressure, forcing the machinery to distribute the weight on a
wider section (McDonald & Seixas [1997]; Ampoorter et al., [2007]).
On the other hand, the studies on the distribution of the weight of ma-
chinery focus on its design features, in particular the number of axles
and the air pressure in tires. Lower pressure increases the contact sur-
face and lowers the pressure against the soil (Alakukku et al., [2003];
Spinelli et al., [2012]). Even applying these amelioration techniques,
their success depends critically on the humidity of the soil (Cambi et al.,
2015). Dry soil reduces drastically the possibilities of severe com-
paction, due to the high degree of union among particles and their in-
terlocking, which creates a resistance to friction-induced deformation
(Hillel, 1998, McNabb et al., [2001]; Han et al., [2006]). On the other
hand, increased humidity reduces the friction among particles and thus
the mechanical resistance of the soil, making it susceptible to severe
compaction (McNabb et al., [2001], Han et al., [2006], McNabb et al.,
[2001]; Han et al., [2006]).

One way to reduce the impact of forest harvesting operations on soil
quality is to create good management policies. In this sense, it should be
taken into account that the nature and morphology of the soil, as well
as the geographical location, affect these policies (Powers et al., 2005).
However, a critical factor is the capability of the soil of reducing mois-
ture. Therefore, taking into account this capability, a policy of good
management of harvest operations should include the analysis of the
level of moisture in the soil before executing the operations. If the mois-
ture level is high, the risk of compaction is also high, and would thus
not be advisable to carry out harvesting operations. On the contrary, if
the moisture levels are low, harvesting operations can be carried out
with a low risk of compaction (Kimsey et al., 2011).

The design of harvest plans involves a complex decision-making
process seeking to achieve efficient results for all the parties involved in
the operations (Bettinger et al., 2010). Specifically, plans have to cover
the operations of transportation, organization of the machinery and
work teams, the felling tasks, among other aspects (Epstein et al.,
[2007]; Bettinger et al., [2010]; Rossit et al., [2019]). Since harvesting
and transporting the logs have a big impact on the cost effectiveness of
the operations, several mathematical models have been developed to
facilitate the planning process (D'amours et al., [2008]; Rönnqvist et
al., [2015]). Usually, the objectives considered in those models are of
economic nature, like minimizing the costs of collecting felled logs or
maximizing the results of the sales of the forestry products, or just to
maximize the production of wood or its Net Present Value (NPV)
(Weintraub et al., [1994]; Andalaft et al., [2003]; Beaudoin2006]; Broz
et al., [2016]). In the last years, non-production goals have also re-
ceived attention, as for instance the conservation of biodiversity, the
protection of the environment (Belavenutti et al., 2018), or social objec-
tives (Meyer et al., 2019).

In this work, we consider the incorporation of concern for the sus-
tainability of the soil into the planning process. The solution requires
assessing the risk of compaction posed by machinery, since in normal
conditions the forest soil would be resistant enough to support heavy
harvesting machinery traffic. However, when the humidity level of the
soil grows, the resistance decreases and severe compaction takes place
(Corrêa and Mosquera 2011). At that moment harvest operations must
be suspended. This situation drastically hinders the plans made by the
managers. Currently, they make annual plans some months before the
start of the harvest. The managers deal with the risk of soil compaction

considering the expected or average compaction scenario in a determin-
istic model. However, such planning strategy presents serious draw-
backs at searching for efficient solutions, since soil resistance depends
on uncertain weather conditions, which exhibit a high variability. We
can conclude that, in order to model adequately the forest system, a sto-
chastic programming approach seems more appropriate.

In this paper, we address the problem of designing harvesting plans
taking into account the conditions of soil compaction. We focus on find-
ing plans that differ from the usual solutions proposed by managers.
Company planners generate plans using a deterministic approach on
the basis of an expected scenario. Our formulation, instead, solves a sto-
chastic version of the problem, yielding better results than the former
setting. This happens because the traditional solutions present serious
drawbacks when the actual scenario differs widely from the expected
scenario. Meanwhile, the stochastic approach records the information
from each possible scenario in the optimization process, yielding opti-
mal solutions even for extreme scenarios.

Then, in a second stage of experimentation, we refine our model,
postulating a biweekly time representation, capturing the hydro behav-
ior of the forest system. In this format, the number of periods becomes
doubled (our first experiments assume a monthly-based time represen-
tation), which implies that a larger number of scenarios have to be con-
sidered. To face this increased class of contexts we use Progressive
Hedging as a resolution method (Rockafellar and Wets, 1991), which
proved to be very efficient in addressing this problem by decomposing
it into a set of sub-problems (one per scenario). As far as we know, this
is the first work that introduces soil compaction in a stochastic model of
forest harvest planning. Addressing this aspect in a plan is of vital sig-
nificance if the properties of the soil are to be protected, in particular
preserving the edaphic mesofauna that contributes to renewing soil nu-
trients. A compacted soil reduces drastically its capacity of supporting
life.

The rest of the paper is organized as follows. In section 2 we present
the scheduling problem of planning harvesting operations as well as the
details of the soil compaction problem in humid areas affecting harvest-
ing operations. Section 3 introduces the stochastic programming ap-
proaches and the Progressive Hedging method applied to solve the
model. Section 4 presents the formalization of uncertainty in both the
deterministic and stochastic formalization. Then, section 5 presents the
results in the analysis of a real-world case. Finally, Section 6 presents
the conclusions.

2. Harvest planning and compaction problems

In this section, we introduce the harvest planning problem to be an-
alyzed in this paper. It is based on a real case in the Misiones province
of Argentina. In that region, the climate and the soil are very favorable
for the production of Pinus Taeda with a yearly growth rate of 40 m3/h
(Broz et al., [2017], Broz et al., [2018], Broz et al., [2017]; Broz et al.,
[2018]). We first present all the issues that have to be considered to de-
velop an annual harvest plan as well as the guidelines followed by man-
agers in the formulation of such a plan. Then, we discuss in depth how
the compaction problem impacts on harvest plans and how to incorpo-
rate it as an additional constraint into the planning problem. Finally, we
discuss how to model the phenomenon of soil compaction.

2.1. The harvest scheduling problem

This work is based on a case study of annual forest harvest, for in-
dustrial forests of the province of Misiones, in the northeast of Ar-
gentina. The specific details of this real world case are provided in sec-
tion 5.1.

In the northeast of Argentina, the stands consist of Pinus Taeda and a
local firm has to supply four different products to four different cus-
tomers. These are a pulp mill, a plywood mill, a sawmill and an MDF
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plant, the standard demanders of primary forest products in Argentina
(Peirano et al., 2020). The products are obtained from the harvested
logs and differ among them by diameter and length. The production
process is carried out in the same harvesting area, which lacks stocking
areas. The processed products are delivered directly from there to the
market. The demands are already fixed by contracts. When the internal
supply from the firm cannot satisfy the contracts, external supply is pur-
chased and delivered to clients. The price of external supply is consider-
ably higher than the production/logistics costs of internal supply.

The stands to be harvested are connected through a network of
abandoned roads. The latter were built for the plantation of the forests
and abandoned afterwards. Hence, it becomes necessary to rebuild
those roads (Broz et al., 2016). The quality of their construction de-
pends on the season for which they are built: roads used in the fall or
winter must be of higher quality than those used in spring or summer
(consequently incurring in higher costs). Spring and summer have bet-
ter weather conditions for the logistic operations, lowering the quality
requirements for the roads. The cost of rebuilding the roads impacts on
the decision of where and when to harvest a stand. An important point
is that, even if a road is used in summer, if it is also to be used in the fall
(some parts of the road network are shared by more than one stand) it
must be built with the higher quality required for that season (Karlsson
et al., 2004). Since the roads are used only during the harvesting pe-
riod, they do not have associated costs of maintenance. The next period
in which these roads are going to be used is when the forest has grown
again, around 15 years later. It is cheaper to rebuild the roads then than
keeping them in good shape for a decade and a half.

According to the conventional planning process, the firm has to de-
fine where to locate the harvesting equipment (Epstein et al., 2007). In
our case study, the firm usually hires five subcontractors to harvest the
surface specified by the plan, providing an adequate number of teams
for the surface and volume of wood to be harvested. The stands are as-
signed to the different subcontractors and the plan specifies how the
products will be supplied by the different stands. The subcontractors
have different harvesting equipment, and therefore, different produc-
tivity rates. Locating a subcontractor in a stand implies incurring in
high logistics costs. Consequently, once the harvest starts at a stand, the
subcontractor must finish the task before moving to a new stand.

A harvest plan faces the risk of compaction induced by the level of
humidity in the soil (Batey, 2009). This is a relevant issue since a com-
pacted soil forces to stop the harvesting operations, affecting the yields
of the activity. The issue gets even more complicated by the lack of cer-
tainty about the actual risk of compaction, because of the uncertainty
about the conditions inducing that risk. Managers apply the simple
strategy of developing an annual plan assuming the most probable sce-
nario, with periods of high and low chance of compaction (Solgi and
Najafi, 2014). The ensuing plan is carried out unless it becomes appar-
ent that the actual situation differs substantially from that scenario. In
that case, when the production is much lower than the planned one,
corrective actions are exerted, increasing the purchase of products to
third parties. This ensures the satisfaction of the demands of customers
and the avoidance of penalties for breaching contracts. This strategy,
while useful to satisfy the demand faced by the firm involves higher
costs (in money and efficiency) than initially assumed.

The objective is to minimize the operational costs, including the
subcontractors’ location costs, harvesting and production costs, the
costs of building roads, the costs of transportation and the cost of exter-
nal purchases. The managers address the annual planning process con-
sidering monthly periods (Broz et al., 2017). This time representation
limits the analysis to twelve periods, which reduces the complexity of
the problem. Then, the managers use standard spreadsheet software to
tackle the problem. While this simplifies the task for them, this proce-
dure fails to yield optimal solutions for the real-scale planning problem.

2.2. Soil compaction

Soil gets compacted when the weight of harvesting machinery ex-
ceeds the resistance of the soil, forcing it to increase its relative density
(Ampoorter et al., 2012). The machines used in forestry have a weight
in the range of 5 and 40 tons, enough to exert significant pressure on
soil (Eliasson [2005]; Cambi et al., [2015]). The first runs of the ma-
chines over the soil have the greatest impact; later on, the compacted
soil would gain a larger resistance, reducing the impact of further runs
(Han et al., 2006). The first run over the soil causes, on average, 62% of
the compaction that affects the first 10 cm of soil (Williamson and
Neilsen, 2000). The effects of compaction are more intense on the su-
perficial layers of soil, decreasing with the depth (Cambi et al., 2015).

As mentioned before, one key factor contributing to compaction is
the humidity of the soil, since it induces a loss in the capacity to resist
load, becoming prone to yield to the pressure of machinery (McNabb et
al., 2001). The relation between humidity and the susceptibility to com-
paction is direct up to a certain degree of humidity, after which addi-
tional wetness decreases compaction (Hillel, 1998). This is because
once the pores in the soil are filled up the soil becomes more resistant,
since water is an incompressible liquid (Ampoorter et al., 2012). Never-
theless, the result in this case is the creation of deep grooves in the
ground (Williamson and Neilsen, 2000). These grooves affect severely
the soil and its capacity to sustain life, with similar or even worse conse-
quences than compaction (Cambi et al., 2015). This has led some au-
thors to postulate the number and depth of grooves as an index of the
loss of productivity of a portion of soil (Lacey and Ryan, 2000).

The permeability of the soil to air is also severely affected by com-
paction. Field studies have shown that after a harvest, if grooves have
been created, the permeability to air in the first 5–10 cm becomes re-
duced between 88% and 96%, while without grooves the reduction is
only 50% (Frey et al., 2009). Compaction also affects negatively the
size of the mesofauna of the soil (i.e., the little invertebrates that enrich
the soil), reducing it to up to 93% if entire trees are extracted jointly
with some soil (Battigelli et al., 2004). Compaction may even affect the
normal development of roots, limiting their access to water and oxygen.
In some cases, this has even hampered the growth of wooden plants for
18 years after the harvest (Cambi et al., 2015).

Soil compaction is thus a phenomenon with severe consequences for
the sustainability and the quality of the soil as a natural resource. The
most common policies used to limit its impact are: (i) reinforcing the
upper layer of the soil with wooden residues, (ii) reducing as much as
possible the contact pressure of machines on the soil, (iii) wait for drier
conditions of the soil, under which its load capacity becomes larger,
and (iv) plan adequately the felling process (Kimsey et al., 2011)
(Cambi et al., 2015). In our analysis of forestry planning, policies (iii)
and (iv) become particularly relevant, since they amount to design har-
vest plans that aim to a sustainable management of the soil. This im-
plies, in turn, that appropriate models of humidity in the soil are
needed, to provide useful information in the planning process.

2.3. Modelling soil moisture

Misiones borders with Brazil and Paraguay and is close to the Tropic
of Capricorn. The climate is tropical, without a dry season. On average,
monthly rains are above 100 mm (over 1200 mm annually), and the an-
nual average temperature is 21 °C (in summer the average is 26 °C)
(Garreaud et al., 2009). This is why Misiones presents extremely good
conditions for forestry: coniferous trees and eucalyptus grow around 35
and 45 cubic meters per year, respectively (Milanesi et al., 2014; Broz
et al., 2018; Meyer et al., 2019). Since the whole year is rainy, the soil is
permanently moist. This feature requires the analysis of the “hydro-
balance” of the soil, i.e., how much water is provided by rains and how
much is eliminated by the ecosystem (plants absorption, evaporation,
etc.). This, in turn, must be integrated into planning models of the
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forestry industry. An important hydrologic concept arises as the key to
this soil moisture modeling, the potential evapotranspiration (PET). PET
represents the capacity of the natural system of eliminating water,
through evaporation. PET is expressed in terms of depth of water
(length units), in the same scale as precipitation measurements. The
value of PET is affected by the number of daylight hours, temperature,
sunny days, winds and many other climate and geographical condi-
tions. This value changes, in particular, with the cycle of seasons of the
year (Lu et al., 2005).

A representation of the soil moisture level is as the hydro-balance
between precipitations and PET, expressed as follows:

(1)

Then, it is necessary to gather from historic reports data necessary
for the incorporation of soil moisture as input in the planning activities.
Table 1 shows the time series of monthly weather averages obtained
from records of the last 27 years (Eibl et al., 2015). Besides tempera-
tures and rainfall (second and third columns of Table 1), we present
data on average PET values (in the fourth column of Table 1). Then, the
next columns represent the hydric balance, obtained according to equa-
tion (1) (fifth column) as well as absolute and relative differences with
respect to the mean (i.e. differences expressed as mm and as a percent-
age in the last two columns, respectively) complete the information in
Table 1. This last column shows that in April, May and June soil mois-
ture exceeds widely the mean. In those months (fall in the Southern
Hemisphere) soil compaction increases significantly, and thus, becomes
crucial for the determination of the optimal plan.

After identifying the fall as the period in which there is a higher risk
of soil compaction, it is necessary to analyze how the relevant variables
behave in those months. Even if the PET value tends to be constant over
the years, the historical records of rainfall show variations, making also
variable its impact on hydric balance. Rain at the different months of
the fall can be analyzed as independent processes. This means that
sometimes the water balance of a given month allows harvesting (be-
cause of a lower risk of compaction) while in others the activities must
be suspended. Therefore, to define a planning scenario we need to in-
corporate the water balances at the different months.

2.4. Literature on forestry stochastic programming

Stochastic planning procedures have already appeared in the litera-
ture. For instance, Alonso-Ayuso et al. (2011) consider harvesting and
road building. In that work, the authors considered a simplified version
of the deterministic approach presented in Andalaft et al. (2003), where
the objective is the maximization of net revenue, assuming a single

Table 1
Monthly average data for a period of 27 years (Eibl et al., 2015).

Month Temperature
(°C)

Rainfall
(mm)

PET
(mm)

Balance
(mm)

Absolute
difference
with the
mean (mm)

Relative
difference
with the
mean (%)

January 26,3 163 152 11 −63 −85%
February 25,9 186 129 57 −18 −24%
March 24,9 161 117 44 −30 −40%
April 21,2 241 75 166 91 123%
May 18,1 176 50 126 51 69%
June 16,1 175 37 138 64 86%
July 15,9 134 39 95 21 28%
August 17,4 103 47 56 −18 −25%
Septembe 18 152 60 92 18 24%
October 21,3 182 90 92 17 23%
November 23,6 178 114 64 −10 −14%
December 25,6 135 146 −11 −85 −114%
Monthly
mean

21,2 165 88,00 77,60

product and 25 stands on an extension of 300 ha. The uncertainty is de-
rived from the variability of prices and demand levels. The problem is
solved with a Branch-and-Fix Coordination algorithmic approach. In
Veliz et al. (2015), the full problem is considered again, this time
adding an extra source of uncertainty, inherent in the growth rate and
yields of the forest. To deal with the increase in the size of problems
they apply a decomposition approach, the Progressive Hedging algo-
rithm (Rockafellar and Wets, 1991). It works by analyzing the problem
under different scenarios. Other decomposition methods have been ap-
plied to forestry production problems, as in Zanjani et al. (2013), which
analyzes the use of sawmills under uncertainty stemming from the vari-
ability of production yields and demand. Varas et al. (2014) consider a
similar stochastic sawmill production problem, approaching it with a
robust method dealing with uncertainties of demand and raw material
supply.

Garcia-Gonzalo et al. (2016) consider the impact of climate change
on the growth and yield of forestry stands in the context of harvest
planning. Those impacts are uncertain, and thus the authors formulate
a stochastic version of the problem. In turn, Daniel et al. (2017), add,
on top of the previous uncertainties, those caused by wildfires. These
authors run Monte Carlo-based simulations to plan timber harvesting
while reducing their potential deficits. Buongiorno and Zhou (2017)
analyze a problem of forestry planning considering the growth of
forests and the evolution of the price of timber as a Markov chain
process. They state a Goal Programming problem taking biological and
financial considerations into account. Alonso-Ayuso et al. (2018) study
the problem of minimizing the risks in forestry planning by considering
price and demand uncertainties. Such uncertainties are also addressed
by Álvarez-Miranda et al. (2019), who study the impact of the variabil-
ity in the growth of trees. These authors use a multi-objective approach
considering different aspects like NPV, carbon sequestrations and the
land erosion caused by road construction. On the other hand, Alonso-
Ayuso et al. (2020) use a stochastic approach to solve the forest tacti-
cal-strategical planning problem on a years-long horizon. Here the un-
certainty refers to timber production. Garcia-Gonzalo et al. (2020)
solve a harvest planning problem taking into account the uncertainty
generated by the effects of climate change on the growth of forests.
Given the magnitude of the problem they face, the authors apply the
Progressive Hedging to manage the computational cost of solving it.

To the best of our knowledge, there are no contributions in the liter-
ature taking into account the risk of soil compaction. The closest contri-
bution is Álvarez-Miranda et al. (2019), which incorporates the erosion
generated by building roads. Nevertheless, as discussed in previous sec-
tions, we study here the compaction of production soil and not the com-
paction of road soil. This difference is critical since that part of the soil
used to build roads is discarded for production since the very start of
the forest plan. The portion of soil used for growing trees must preserve
its productivity. In consequence, we conceive this work as the first in
considering the risk of compaction in the process of planning harvesting
operations.

3. Stochastic programming and the Progressive Hedging
algorithm

The right way of addressing a problem affected by uncertainty like
the one stated here is by means of stochastic programming (Birge and
Louveaux, 2011). Stochastic programming allows representing the de-
cision-making problem with all the features that decision makers must
face, as well as specifically defining the relationships between the deci-
sion variables and possible scenarios. Stochastic programming can be
approached with mixed-integer mathematical programming (MIP)
models in two different ways, either through an extended formulation
of the problem, or through a compact formulation. In the extended for-
mulation, the variables and restrictions of the MIP model are indexed in
the set of scenarios. This ensures that the values taken by the decision
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variables are consistent for all scenarios (i.e. they satisfy the conditions
of non-anticipation). On the other hand, the compact formulation al-
lows reducing the size of the problem in terms of variables and restric-
tions, by indexing the variables by information nodes (Birge and
Louveaux, 2011). However, solving a problem in its stochastic version
implies solving a larger and computationally more costly problem than
solving it in a deterministic version (Varas et al., [2014]; García-
Gonzalo et al., [2016]). In our case, we have modeled our forestry plan-
ning problem using both the extended and compact formulations. How-
ever, in both cases, the required computation times are excessive.

One way to overcome this computational limitation is through de-
composition techniques, such as Progressive Hedging (PH), which de-
composes the problem by scenarios (Rockafellar and Wets, 1991). By
breaking down the problem by scenarios, PH allows solving small sub-
problems (even in parallel) that are much less costly in terms of compu-
tation, allowing addressing real-scale problems such as the case study
in this work. The main characteristics of PH are detailed below, as well
as the implementation used to solve our forestry planning problem.

3.1. Progressive Hedging

The framework of a multistage stochastic optimization problem can
be represented as a scenario tree, as at the top of Fig. 1. We can see that
paths from the root to the scenarios share some nodes. The information
in nodes of a given path up to a bifurcation will be shared by all the sce-
narios that are reached from there. Consequently, decisions involving
events represented in the shared nodes must yield the same value. This
condition ensures the consistency of the solution. It is known as a non-
anticipatory constraint. That is, nodes in the tree have the same value at
all the decision vector elements associated with that node. Therefore, a
problem of stochastic optimization can be written as follows:

Here, is the probability of occurrence of scenario s and
is the value of the objective function for the solution vector x in that
scenario. The solutions must be feasible at each scenario when they are

considered independently and satisfy the non-anticipatory constraint
on each node in the tree where the scenarios are combined. repre-
sents the class of constraints on scenario s while is the set of non-
anticipatory constraints. Finally, the sum of the probabilities yields 1,
as expected. This format is known as the extensive formulation of the
problem, which can be either explicit or implicit (Birge and Louveaux,
2011).

As more information is included in the model (i.e., adding more sce-
narios), the extensive formulation becomes more complex and difficult
to solve, requiring a decomposition approach. In our case, as said, we
use Progressive Hedging (PH), where the non-anticipatory constraints
are relaxed (Rockafellar and Wets, 1991). The basic idea of the Progres-
sive Hedging (PH) algorithm is to relax the non-anticipatory constraints
and solve the scenarios problems independently. This reduces drasti-
cally the computational effort, down from the effort of solving the en-
tire extensive form formulation. Nevertheless, it could preclude the sat-
isfaction of the non-anticipatory constraints, which can be rarely met in
such separated scheme. To address this question, the PH algorithm iter-
atively solves the sub-problems of the different scenarios, gradually im-
posing the equalities required by the non-anticipatory constraints. No-
tice that, when all the variables become equal, they will be also be
equal to their average. The PH algorithm works by incrementally apply-
ing the non-anticipatory constraints by penalizing deviations from the
average of the values of the decision variables. The bottom part of Fig. 1
represents the tree structure decomposed by scenarios, where nodes
that must respect the non-anticipatory constraints are framed by
dashed circles.

Therefore, each scenario is solved independently as:

PH then calculates an average solution and a convergence value to
determine whether the solutions are sufficiently non-anticipatory. The
convergence value quantifies the deviation of the solutions from the
"average" solution. If the convergence value achieved is sufficiently
small (tolerance parameter), PH stops because the non-anticipation re-
strictions are satisfied (approximately). Otherwise, PH calculates the
penalty terms, ρ, for each decision variable, proportional to both the de-
viation from the average and a penalty factor ρ. These penalty terms

Fig. 1. Representations of the scenarios: Tree-scenario structure (top) and decomposed by scenarios (bottom).
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force non-anticipatory values while solving the sub-problems of the sce-
narios. This process is iterated until the non-anticipatory constraints are
satisfied in practice. In our case we use PH in a heuristic way, i.e. the
convergence in the variables associated with the non-anticipatory re-
strictions is only estimated. The main reason for this modification is the
high computational cost of waiting for an exact convergence. In addi-
tion, it has been shown that for practical purposes, the quality of the so-
lution obtained is widely satisfactory (Haugen et al., 2001; Pais
Martínez, 2014; Veliz et al., 2015).

The PH base algorithm used for this work is presented below in the
Algorithm illustration. This base algorithm was presented in
Rockafellar and Wets (1991).

Pseudocode of the Progressive Hedging Algorithm
1) Initialize: ε tolerance
2)
3) ;
4)
5) ;

6)

7) ;

8)
9)

10)

11)

;

12) Go to 4;
13) Use as hotstart, solve Extended Formulation

In steps (1) and (2) the algorithm is initialized. In step (3) solves the
decomposed problem for the first time, i.e. each scenario separately,
and in step (4) the procedure is iterated, recording the results. With
those results, step (5) calculates the expected values of the variables
that share information between different scenarios in some node (i.e.
variables that intervene in non-anticipatory restrictions). Then, step (6)
calculates the distance from the solution of each scenario to the ex-
pected value. In step (7) the quality of the current solution is assessed,
both in terms of convergence respect to the best one found so far , and
in terms of the objective function, updating them, if necessary. Step (8)
evaluates the satisfaction or not of the halting criteria of the algorithm.
Step (9) is completed at the first iteration, where the value ρ is initial-
ized to penalize the deviations. The next step (10) calculates the
weights that affect the variables that deviate from the expected
value. Step (11) solves each scenario using Lagrangian relaxation con-
sidering the weights defined above. Step (12) generates the loop. Fi-
nally, once the halting criteria have been satisfied, the solution ob-
tained in the complete problem is evaluated at step (13) without fur-
ther decompositions.

As stated earlier, the implementation of PH in this work is heuristic
(i.e. the convergence procedure stops when practical tolerances are at-
tained). At the same time, different methods and strategies are incorpo-
rated in the PH algorithm in order to improve its computational perfor-
mance. More details can be found in the Supplementary Materials file.

4. Mix integer programming models: deterministic and stochastic

We will apply different mixed-integer linear models to address our
main problem. The first one is the deterministic MIP model currently
used by the managers in the real world case to design the annual plans.
After that, we consider a stochastic version that improves over the for-
mer.

4.1. Deterministic model: monthly representation

Managers plan the harvest operations a year before carrying them
out. Their model is deterministic. They assume a scenario (which sum-
marizes their subjective expectations). The plan is designed to satisfy
the demand contracts signed by the firm, using its own production as
well as purchases to third parties. If during the execution the real sce-
nario differs from the assumed one, the firm adjusts by changing the
amounts bought to third parties.

These corrections are carried out during the year of harvest, in par-
allel with the evolution of the compaction of the soil. Fig. 2 depicts the
flow diagram of the plan. The first step in the diagram is to calculate the
annual plan using the expected scenarios as input for the planning
process. Then, the calculated plan is executed. During the execution of
the plan, the actual scenario reveals its features and compaction condi-
tions take place. If these conditions still allow satisfying the demand,
the plan keeps being carried out. The dashed circles in Fig. 2 under the
decision diamond represent this situation, deemed as the Deterministic
strategy. On the other hand, if the conditions do not allow satisfying the
commitments of the firm, extra supplies are needed to fulfill the con-
tracts. In the dashed circle to the right of the decision diamond we rep-
resent the Flexible strategy, consisting of purchasing the missing
amounts of timber. Both strategies are aimed at fulfilling the contracts
of the firm, but the flexible one involves the higher costs of buying from
other purveyors as well as intangible complications ensuing from hav-
ing to modify continuously the plan. The deterministic strategy does
not allow the possibility of external purchases.

The mixed-integer model corresponding to this plan involves the
following items:

Sets
I : Stands, indexed by i
T: Time periods in the planning horizon, indexed by t
E: Harvesting equipment, indexed by e
R: Abandoned-roads, indexed by r
M: Markets, indexed by m
P: Products, indexed by p
Q: Quality types of roads, indexed by q = 1, 2 (1 for high quality, 2

for the low quality)
: high quality periods for road building.

Deterministic Parameters
Ai: Area of stand i
TUCi,m: Unitary cost of transportation from stand i to market m,

expressed in [$/km]
di,m: Distance from stand i to market m, expressed in [km]
si: Surface of stand i [h], h:hectare
voli,p: Volume of product p obtained from stand i, expressed in

[m3h−1], h:hectare
coci,t: Cost of harvesting and processing 1 m3 of wood from stand i in

period t.
buildr,q: Cost of building road r of quality q
rci,r: Binary parameter: 1 if road r is necessary to reach stand i, 0

otherwise
cse: Logistic fixed costs of locating harvesting equipment e.
OrigDesp,m: Binary relationship between product p and market m: 1 if

product p can be delivered to market m, 0 otherwise.
demandm,p,t: Lowest possible demand of product p in market m at

period t, expressed in [m3].
Cextp,t: Cost of buying external supplies of product p at period t.
Cap: Capacity of a delivery truck, expressed in [m3]
Ni,e: Number of time periods at which harvesting equipment e is

needed to harvest stand i.
Variables

: Binary variable: 1 if the harvest of stand i by equipment e starts
at period t, and 0 otherwise.
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Fig. 2. Harvest plan based on the deterministic approach.

: Binary variable: 1 if road r is built with high quality construction
(i.e. q = 1), and 0 otherwise.
: Binary variable: 1 if road r is built with low quality construction
(i.e. q = 2), and 0 otherwise.

: Amount of product p produced in stand i delivered to market
m at period t in m3

: Volume of external purchases to supply market m with
product p at period t.

z: Total cost of planning

Objective Function:

(2)

The objective (2) is the minimization of the total cost of the plan.
The first term expresses the cost of localizing harvesting equipment, the
second term the cost of external purchases, the third term presents the
transportation cost corresponding to a fleet of trucks (the parameter
TUCi,m indicates different fractions of pavement and dirt roads among
the paths). The fourth and fifth terms represent the costs of building
roads (high quality and low quality, respectively). The last term incor-
porates the harvesting and processing costs.

This objective function is subject to:

(3)

Each stand can be harvested only once in the entire planning hori-
zon and by only one harvesting equipment.

Constraints (4) and (5) indicate that any equipment e that starts har-
vesting a stand i at period t will be busy for the next Ni,e periods. Con-
straint (4) represents the cases in which e finishes its harvesting opera-
tions at a period in T while constraint (5) considers the cases in which it
does not.

(4)

(5)

Constraint (6) determines whether road r must have the highest
quality since it will be used during the rainy season. The restriction is
satisfied if the path r is used at any period belonging to the periods that
require high quality of road, i.e. . For that, in the first term, on the
right side of the restriction, those stands that begin to be harvested
within train are added. In the second term, those stands that began to be
harvested before the period, but that are still active during are
added. Finally, a division is made by T to ensure that the right side of
the constraint is < 1.

(6)
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On the other hand, constraint (7) indicates whether road r can be
built with a lower quality, considering that it will be used only during
the dry season. The right side of this restriction is analogous to the one
in (6), except that here we seek to consider periods outside .

(7)

Restriction (8) is an upper bound for αr and βr, since the sum of them
has to be at most the number of roads used during the harvesting
process.

(8)

In restriction (9), the amount of each product p from a stand i at pe-
riod t is assigned to a suitable market m.

(9)

Finally, the demand must be satisfied by the combination of internal
and external supply:

(10)

4.2. The stochastic model

We can add to the previous approach a model of the uncertainty as-
sociated to the harvesting process.

4.2.1. Modeling the risk of soil compaction
The risk of compaction increases with the humidity of the soil,

which depends on the rain regime, which in turn, is uncertain. Then,
the uncertainty derived from the risk of soil compaction presented in
section 2.3 affects the way in which harvesting operations have to be
represented. The impact of compaction can be modeled in terms of the
delays in the production process due to the impossibility of harvesting
during certain periods of time. The displacement of machinery from a
stand to another is quite costly and its logistics are complex. Thus, the
alternative of changing the stand to be felled on the fly must be dis-
carded. The risk of compaction affects then the length of the harvest at
the different stands, represented by the parameter Ni,e, since delays due
to soil compaction affect the stipulated harvest time for stand i. These
delays can only happen in the fall and thus can last either one, two or,
in the worst case, three months. Then, we replace Ni,e by its stochastic
counterpart , representing the time it takes for the harvesting
equipment e to harvest stand i under the conditions of scenario s, if op-
erations start at period t. If no uncertainty affects the operations in a
given month t then will be the same as Ni,e. So, for instance, if the
scenario presents compaction in April and May, the stands that should
be harvested in June or later (as well as those whose harvest ends be-
fore April) will not be affected by delays.

4.2.2. Generation of scenarios
As said, the uncertainty in this problem can be captured by .

Since we are considering a problem in which the events (periods at
which there is risk of compaction) happen in a chronological order, dif-
ferent combinations of events are possible. Nevertheless, the events cor-
responding to the initial time periods remain fixed with respect to the
other events. Then, it seems adequate to illustrate the possible scenarios
(that is, the different combination of possible events) with a tree of sce-
narios, as shown in Fig. 3. The different scenarios represent the set of
possible values of the risk of compaction.

In Fig. 3 the information is represented on a monthly basis. The root
is labeled "0″ since the periods before April are basically unaffected by
uncertainty (i.e. ). At t = April we get the first bi-

Fig. 3. Scenarios for a monthly representation of time.
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furcation, corresponding to whether there is a (high) risk of compaction
or not. The same goes for t = May and t = June. The different scenar-
ios are formed according to whether the risk of compaction at each
month is high or not. We choose, as usual in local practice (Broz et al.,
2018), values over 45 mm per month to characterize a month as being
risky. Since this is a binary variable the total number of possible scenar-
ios is 8 (23), each of which is a terminal node in the tree. The probabili-
ties of occurrence of each scenario are determined according to the his-
torical records of rainfall, according to the independent possibility that
a month's balance surpasses 45 mm. Since PET is constant, rainfalls in-
fluence stochastically the balance, thus, the probability of each scenario
depends on the probability of rainfall. Then, risky months have a proba-
bility of 0.6 of surpassing the PET value in more than 45 mm.

The Stochastic MIP model is presented in full detailed in the Supple-
mentary Material file. The main differences of the Stochastic model
with the Deterministic model defined by equations (2-10) is that a new
set S is incorporated, grouping the possible s scenarios. Then, in the sto-
chastic model the decision variables become dependent on the scenario
s, as for example , which defines the period t in which the stand i be-
gins to be harvested by the contractor equipment e for scenario s. The
same happens with the rest of the variables.

4.3. Two-week modeling

A finer time representation would yield a more realistic model of the
system. But the current practice is to generate an initial plan for 12
monthly periods, and then adjust it by hand as real-time elapses (Broz
et al., 2018). These adjustments are required, for example, when a
stand takes, in real terms, 1.5 months to be harvested. Since the plan-
ning period differs only by months, the parameter Ni,e for that stand
must be forced to be 1 or 2 (considering only integer values). For exam-
ple, if it is forced to be 2 when e has finished harvesting that stand, the
harvesting team should wait idly until the two months are over or be
moved to another stand in a shorter time than planned. Another rele-
vant consideration is that a unit (a single month) must be either labeled
as “rainy” or “not rainy” while it is likely that within a month there will
actually be rainy and not rainy lapses. Dry and wet streaks in a month
generate efficiency losses requiring frequent reprogramming of pur-
chases to third parties.

We propose, instead, to duplicate the number of periods in the plan-
ning horizon by considering half months (a biweekly frequency). This
fits better the possible weather events affecting the system. On the
other hand, this representation of time increases the size of the prob-
lem. The original 3 months become 6 periods increasing the number of
possible scenarios to 64 (26). The same considerations as in the case of
monthly periods will be valid for parameter although T and S will
be now different. This means that the schema of scenarios is similar to
that described in Fig. 3, only that the branching depends on the possi-
bility of compaction in a two-week period. Reducing the lag between
two bifurcations in the diagram makes, on one hand, the representation
more realistic, but on the other increases the number of scenarios, com-
plicating the computation of solutions. To face this additional difficulty,
we have to apply decomposition strategies, using the Progressive Hedg-
ing algorithm presented in section 3.1.

5. Computational experiments

5.1. The case study

A total of 40 stands are involved in the design of the plan, reaching a
total harvesting area of around 1000 ha and over 300,000 m3 of timber
to be processed. There are twenty-six roads to be covered by five har-
vesting equipment belonging to different subcontractors, each of them
with different production rates. Each of them consists of a harvester, a
forwarder and loader, and all the machines and staff required for forest

harvest. Four different products are obtained, each one supplying a dif-
ferent market (an MDF plant, a pulp mill, a plywood mill and a
sawmill). The volume of each product in the stands is informed by the
firm.

As indicated, the planning problem is currently addressed by the
company on a monthly basis for a one-year period following a deter-
ministic approach (Broz et al., 2018). That is, a deterministic plan defines
the month-by-month operations to be carried out next year. The deter-
ministic plan is defined on the basis of the expected scenario for the fol-
lowing year and has very little flexibility for unforeseen events that
have an a priori low probability of occurrence. The managers, knowing
this, address this issue by being ready to reprogram the purchases to
third parties to meet the demands. Once the planned year begins, it is
possible that the necessary delays to avoid soil compaction are different
from expected. The managers have then to implement a "flexible" strat-
egy consisting of acquiring different amounts to third parties than spec-
ified in the deterministic plan. We call this reprogrammed version the
flexible plan. Here, instead, we consider an alternative based on stochas-
tic programming. This plan assumes a decision-making process in a
multistage format where the scenarios are pre-defined by the possibility
of soil compaction in certain periods. As said, we require that the sce-
narios share the same solutions for the common segments and up to the
point at which they differ.

We study the three strategies, deterministic, flexible and stochastic,
for the two periodizations, monthly and biweekly. We run experiments
using real-world data. We also run a sensitivity analysis of the demand
to see, on one hand, how the level of demand affects production costs,
and on the other, how the demand affects the robustness of the stochas-
tic solution. The demand levels considered for this exercise are 25%,
50%, 75%, 90%, 95% and 100% of the real demand.

5.2. Results

The results obtained for the different planning models are presented
below. First, the whole analysis is shown for the monthly planning case,
and then for the biweekly planning one.

5.2.1. Computational justification for using Progressive Hedging
The first approach to solve the stochastic problem is to try its opti-

mal solutions. This requires using the extensive formulation of the
model. But for many real-world problems (as the one analyzed here) the
use of the extensive form of the model can be unfeasible since it re-
quires heavy use of computation resources, sometimes exceeding the
capacities of the computer systems devoted to the analysis of the prob-
lem. This is exactly our case: we cannot find efficient solutions in a rea-
sonable time if we use the extensive format.

In the case of the monthly representation (8 scenarios), the exten-
sive form required 7200 s (i.e. 2 h) to find the best solution with a gap
of more than 9%, using the CPLEX commercial solver. With the bi-
weekly representation (64 scenarios), the same time, i.e. 7200 s,
yielded a solution with a gap of more than 83%, even allowing the
solver to use 20 cores of a high-performance computer cluster. Allowing
it to run for 36,000 s (10 h), the gap exceeded 27%. With 72,000 s
(20 h) and using 20 cores, the gap was reduced to 7.8%.

For a realistic representation of the solution process, we also run it
on a personal computer with 4 cores, similar to the one that is actually
used by the firm. After 72,000 s, the optimality gap was 10.3%. It is
clear that it is unfeasible to devote 20 h of the managers of the firm to
obtain a solution. Thus, the use of PH contributes to reducing the time
required to solve the problem.

5.2.2. Monthly representation
The results of the three strategies (deterministic, flexible and sto-

chastic) for monthly planning periods are presented in Table 2, which
shows the total costs of meeting the demands of the four markets to be
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Table 2
Costs of stochastic, flexible and deterministic production plans for the eight
scenarios, the % differences are defined with respect to the stochastic cost.

Scenarios Stochastic
[$]

Deterministic Flexible

Scenario cost
[$]

%
Difference

Scenario cost
[$]

%
Difference

1 10,664,883 infeasible – 99,868,544 13.2%
2 88,148,260 99,868,864 13.3% 99,868,864 13.3%
3 88,445,574 99,868,864 12.9% 99,868,864 12.9%
4 65,954,816 infeasible – 100,641,173 52.6%
5 89,118,015 infeasible – 99,868,544 13.2%
6 65,401,338 99,868,864 52.7% 99,868,864 52.7%
7 67,851,661 99,868,864 47.2% 99,868,864 47.2%
8 47,602,801 infeasible – 100,641,173 111.4%
Expected $85,690,150

supplied. The results of the deterministic model respond to an expected
scenario, which may not coincide with any particular scenario, but it is
still possible to calculate the potential performance of the plan at each
particular scenario (as shown in Table 2). To do this, we apply the solu-
tion of the deterministic plan taking up the value of the parameters of
each particular scenario. This yields the value of the objective function
at each scenario. Let us note that the deterministic solution can be in-
feasible for some particular scenarios. All this is evidenced in Table 2.

The procedure to find the results with the flexible strategy is similar,
but is only executed in the cases in which the deterministic solution
fails to meet the demand (as indicated in Fig. 2). It is clear that in their
planning process managers will not accept computer runs taking more
than 20 h.

Table 2 shows that the expected cost of the stochastic plan is
around AR$ 85 million (AR $ 85,690,150), while the cost of the deter-
ministic plan is almost AR $ 100 million (AR $ 99,868,864). This im-
plies that the stochastic solution reduces costs by 15% with respect to
the deterministic plan, around AR $ 15 million. This improvement ob-
tains thanks to the incorporating of more information into the problem.
Furthermore, if the solutions obtained are analyzed on specific scenar-
ios, the stochastic plan shows even more benefits, since the determinis-
tic plan is not feasible for four of the eight possible scenarios. On the
scenarios in which the deterministic plan works, the stochastic plan
yields a considerably lower cost. For example, at scenario 6 the sto-
chastic plan costs 50% less than the deterministic plan.

In the scenarios in which the deterministic plan is not feasible, we
implement the flexible strategy, as it would be done by the managers.
But this strategy only solves the infeasibility, increasing purchases from
third parties until reaching the demanded amounts. But this implies in-
curring in a high cost since a cubic meter of any of the four products
purchased from third parties is significantly more expensive than one
produced by the firm. This is clear in the case of scenario 8, in which the
flexible plan generates a cost that more than doubles that of the sto-
chastic plan.

We can also analyze the impact of varying the level of demand. Fig.
4 shows the variation of costs of the annual stochastic plan as a function
of the demands. We can see that this relationship tends to be linear. A
closer look reveals the existence of two different responses, one for val-
ues up to 90% of the demand and the other for those between 90% and
100%. In both, the relation is linear, although in the latter case it is a bit
steeper, meaning that variations in demand have more impact on costs
at higher than at lower levels of demand.

The impact of the level of demand on the three strategies is reported
in Table 3. The deterministic solution has a very poor performance. For
instances where the demand is considerably lower than 100% of the ac-
tual demand, the deterministic approach provides a feasible solution
for only two of the eight possible scenarios. This indicates how sensitive
to the demand this form of planning is. In specific scenarios, the deter-
ministic solutions have a higher cost than stochastic ones, with differ-

Fig. 4. Sensitivity of the costs of the stochastic plan to variations of total de-
mand in the monthly planning periods.

Table 3
Solutions at different levels of demand at the monthly planning periods. The
% difference in cost is the average percentage on feasible scenarios, with re-
spect to the corresponding stochastic solution.

Demand
satisfied

Stochastic Deterministic Flex

Expected
cost

%
difference
in cost

Number of
infeasible scen

%
difference
of cost

Number of
feasible scen

25 $
17,229,210

34.7% 6 69.8% 0

50 $
35,372,994

50.9% 6 67.4% 0

75 $
56,292,781

40.0% 6 61.2% 0

90 $
71,586,575

37.7% 6 56.8% 0

95 $
78,729,296

32.1% 6 51.3% 0

100 $
85,690,150

31.5% 4 48.4% 0

ences ranging from 31.5% to 50%. For the Flexible case, these costs in-
crease, starting at 48% and rising up to 67%. This increment obeys to
the fact that the flexible strategy is more dependent on external supply.
However, this larger external supply enlargement allows meeting the
demand in 6 of the 8 possible scenarios (the deterministic plan is feasi-
ble only in 2 scenarios).

5.2.3. Biweekly time representation
Biweekly planning procedures duplicate the number of periods,

which is why the PH algorithm is used to calculate the production
plans. The solutions obtained by means of PH do not ensure, in general,
the optimal solution to discrete problems. However, PH yields an an-
nual planning for this more realistic and difficult problem. In our case,
we can verify the quality of the solutions by comparing them with the
solutions obtained with the deterministic and/or flexible approach.

In Table 4 (in the Appendix), we present the results with stochastic,
deterministic, and flexible plans for the 64 scenarios. We can see that
the deterministic plan is not able to generate a feasible solution to the
problem. This shows that the solutions obtained with the tools used by
managers are very unreliable (this is why they limit themselves to the
monthly representation). We can see that only by resorting to the flexi-
ble strategy, it may be possible to use a more atomized representation
of time periods. In turn, the stochastic approach generates feasible pro-
duction plans for all possible scenarios, with a total expected cost just
over AR $ 96 million. Comparing the costs of the plans obtained with
the stochastic solution to those obtained with the flexible strategy (col-
umn "gap"), we find that they can be considerably different, ranging
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from 62% on scenario 29 to a negative 9% (Scenario 2). On average, the
stochastic approach achieves a 23% improvement over flexible plans.
However, when looking at specific scenarios, we observe that there are
cases where the flexible strategy yields better results than the stochastic
strategy (those in which the gap is negative). This happens because
there are scenarios that have parameters similar to those of the ex-
pected scenario. Therefore, since the flexible strategy uses the deter-
ministic solution as a basis (calculated on the expected scenario), it
yields better results than the stochastic solution when scenarios are sim-
ilar to the expected one. On the other hand, it is possible to see that the
cost of the stochastic solution tends to be lower than the cost of flexible
plans.

We can analyze the behavior of the proposed resolution method at
different conditions of the problem, running the same sensitivity analy-
sis to the demand as for the monthly planning periods. For this, we set
the demand at 95%, 90%, 75%, 50% and 25% of the demand used to
obtain the results in Table 4. The deterministic approach again does not
yield feasible solutions. Table 4 presents a comparative summary of the
results under the stochastic and the flexible approaches. The number of
infeasible scenarios as well as the gap between the stochastic solutions
and the flexible solution is shown according to the type of strategy. To
characterize the gap, we show the maximum, minimum and average
improvements due to the adoption of stochastic planning instead of
flexible planning.

In Table 4 the number of infeasible scenarios indicates that the sto-
chastic approach is clearly superior to the deterministic approach since
the latter is unfeasible at all the scenarios. On the other hand, with re-
spect to the flexible approach, in all cases, the stochastic solution re-
duces the average cost of the flexible solution. The stochastic solution
yields a production plan saving more than 17%. In turn, as the demand
to be satisfied decreases, the average improvements of the stochastic so-
lution tend to increase, reaching peaks of 51% for the 50% of real de-
mand. The largest improvements of the stochastic plan obtain with
lower levels of demand. This can be explained by noting that, as the de-
mand to be satisfied decreases, the stochastic plan satisfies it with a
higher proportion of its own production. The satisfaction of demand by
increasing purchases from third parties proper of the flexible strategy is
much more expensive.

Fig. 5 depicts the relationship between the costs of the expected
stochastic solution and the percentage of demand to be met. The rela-
tionship tends to be fairly linear: the higher the level of demand, the
higher the cost of the production plan. In turn, unlike the monthly
case, when demand levels approach 100% the slope of the line tends to
decrease.

5.2.4. Comparison of the monthly and biweekly time representations
Before comparing and discussing the results of the previous sections

it is worth to mention that the costs calculated in the two models,
monthly and biweekly, do not represent exhaustively all the costs and
expenses that the company must face. However, this is not the main ob-
jective when deciding the management plan. The crucial element is not

Table 4
Comparison of solutions for different demand levels in the biweekly ap-
proach.

Demand
Percentage

Stochastic
solution

Based on Deterministic Model

No. Infeasible scenarios GAP

Deterministic Flexible Max Min Average

25% $ 19,294,138 64 0 108% −13% 44%
50% $ 36,991,199 64 0 113% 0% 51%
75% $ 61,059,206 64 0 79% −3% 34%
90% $ 79,790,729 64 0 83% −17% 26%
95% $ 91,352,349 64 0 89% −8% 18%
100% $ 96,891,656 64 0 62% −9% 23%

Fig. 5. Sensitivity of the costs of the stochastic plan against variation of the to-
tal demand in the biweekly approach.

the final cost obtained by each plan, but the sequence of decisions asso-
ciated to the plans. In this sense, the main difference between the
monthly and biweekly model is that the latter allows improving our
ability to represent the real problem faced by the managers. This is due
to the possibility of capturing the higher variability within a month,
with periods at which we are or not able to harvest. This can be cap-
tured by the biweekly model, but not by the monthly one. Therefore,
the biweekly model allows decisions to be made that more faithfully
represent the situations that managers may face, thus improving their
decision-making capacity, which will result in lower real costs.

The stochastic solutions can be compared for the two representa-
tions of the planning periods (monthly or biweekly). We find that the
cost of the expected plan for the monthly stochastic solution (ES-M) is
around AR $ 85 million, while for the biweekly stochastic solution (ES-
F) it is of almost 97 million AR $. This indicates that ES-F is more expen-
sive than ES-M. So, the move towards a better representation of the
problem (the biweekly representation fits better the temporality of
forestry operations) seems to imply a loss of planning efficiency. But a
closer examination shows that the contrary happens.

The scenarios with rains will always be more expensive than the sce-
narios without rain, being in the latter the supply of the production of
the firm at its maximum. Therefore, in the monthly representation there
exists only one scenario at which it does not rain at any one of the
months of the fall, representing 1 of 8 scenarios (12.5% of the scenar-
ios). While in the biweekly representation there is also only one sce-
nario in which it does not rain at any period (biweekly). Since the total
number of scenarios is 64, this means that it does not rain only in 1.5%
of them. Although it is true that these percentages are affected by the
probabilities, we can notice the difference implies that the ES-F will in-
corporate purchases from third parties in more scenarios (in 98.5% of
them), raising the cost of the expected stochastic solution. As an illus-
tration, consider the scenario for the monthly representation in which it
does not rain during one of the three critical months, implying that in
three of the eight possible scenarios there will be a month in which the
production of the firm is able to satisfy the demand. In the biweekly
representation, instead, if there is no rain in a period, there will be a
half month of full provision, but this will be the case of only 6 of the 64
possible scenarios. Even so, recall that the biweekly representation pro-
vides a more reliable characterization of the conditions of soil com-
paction.

However, the biweekly representation yields a better model of the
harvesting dynamics (the duration of Ni,e is more realistic at this fre-
quency), as well as of the hydrological balance of the soil, and conse-
quently, of the risk of soil compaction. As mentioned above, consider-
ing fifteen-day intervals allows a better representation of the harvesting
operations, since the duration of these operations depends on the equip-
ment that each contractor possesses, the size of the stand and the vol-
ume of wood, among other factors. Therefore, considering a time repre-
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sentation finer than a monthly one allows us to improve the representa-
tion of the impact of all these aspects in the definition of Ni,e. On the
other hand, the biweekly periods also represent much better the hydro-
logical balance of the soil, and therefore, the risk of compaction. As
shown in Section 2.3, the risk of compaction depends on the humidity
level, which is directly linked to the rainfall regime. Thus, considering
"rainy" periods of a full month is less realistic than considering biweekly
"rainy" periods. In other words, in the biweekly modeling, the occur-
rence of two consecutive “rainy” periods (i.e. a “rainy” month) is still
possible, but it also incorporates the scenarios in which the whole
month is not rainy, making harvest possible during part of that month.
In turn, modeling the periods biweekly allows considering 2 consecu-
tive periods of rain, actually belonging to different months. This last
case gets lost in the monthly model, despite being equivalent to a rainy
month. Therefore, biweekly modeling has several advantages over
monthly modeling, other than the values of the objective function.

5.2.5. Discussion
This work is intended as a contribution to the literature that pro-

motes stochastic programming as a valuable tool for forest planning. It
is interesting to note that many of those studies have captured different
uncertain features faced by planners, such as the price of products
(Alonso-Ayuso et al., [2011]; Buongiorno & Zhou [2017]), the volume
of wood to be harvested (Veliz et al., 2015) and variations in demand
levels (Álvarez-Miranda et al., 2019). The risk of soil compaction, in-
stead, has not been previously addressed in that literature. This work
contributes to filling that gap by incorporating this critical factor in the
harvesting operation. In this sense, the results of our research show that
with an adequate approach it is possible to plan operations to be carried
out even in the most unfavorable weather seasons. It is important to
emphasize that advanced stochastic programming methods such as PH
are required to find solutions modeling bi-weekly time intervals.

Although we found that stochastic programming is an effective ap-
proach to this planning problem, our future research agenda includes
the development of weekly-based models. This is relevant because it
seems to make more statistical sense to try to predict rainfall on a
weekly basis using the historical record. But such level of detail could
induce a very volatile behavior (for example, if it were possible to dis-
tinguish whether the first or the second week of April is rainier) or even
affect the independence of the distribution of variables. On the other
hand, an aspect that has become increasingly important in different
economic activities is the impact of the carbon footprint. It indicates
how economic activity affects the production of greenhouse gases. For-
est harvesting uses heavy machinery, which requires large amounts of
fuel. Then, it could be interesting to incorporate this factor into harvest
plans to reduce those emissions. Another line of research could be to
consider a version of the problem in which different objectives could be
considered simultaneously, such as maximizing the monetary income
and reducing the distances covered by trucks. In this case, a promising
approach is Goal Programming (Díaz-Balteiro et al. al. 2017).

6. Conclusions

This paper addresses the problem of planning annual forest har-
vests. The version of the planning problem addressed here is of special
interest, since it seeks to incorporate the risk of soil compaction as a re-
striction to harvesting operations. The risk of compaction is a phenome-
non closely related to the rainfall regime with its inherent uncertainty.
The recommendation is not to harvest when soil moisture is very high,

since the risk of severe compaction is also very high. In turn, when the
humidity level is lower, the recommendation is to harvest. Then, a pol-
icy of good planning management is to take into account the level of
soil moisture as an input of the decision-making process.

Currently, companies in the field solve the problem with a determin-
istic model using information from the expected scenario. If during the
execution of the plan, the real scenario departs from the expected one,
the managers adjust the plan by purchasing products from third parties
to meet the demands of the clients. These adjustments force the compa-
nies to incur in higher costs than those of self-production. We devel-
oped a stochastic model that deals with the uncertainty derived from
the risk of soil compaction. This stochastic model prevents the plan
from being infeasible at any of the scenarios. In turn, the plan obtained
by stochastic programming allows meeting customer demands at a con-
siderably lower cost than the deterministic plan, reducing the costs in
up to a 15%.

We also introduced a biweekly representation that allows to model
in a more realistic way both the dynamics of the harvesting operations,
as well as the hydric balance of the soil and its associated risk of com-
paction. This biweekly representation induces a considerably larger
computational effort than the monthly one, since the planning periods
become 24 instead of 12, and the number of possible scenarios is now
64 instead of 8. The deterministic strategy usually applied by forestry
companies gets overwhelmed in this biweekly representation of the
problem. Feasible solutions can then only be obtained using a flexible
strategy. The stochastic programming model, instead, yields solutions
for all the scenarios of the problem. To cope with the additional compu-
tational effort that biweekly representation requires, we applied a Pro-
gressive Hedging-based method. It allows obtaining high-quality solu-
tions with a lower computational effort than the problem in the ex-
tended formulation. Although the solutions obtained with Progressive
Hedging are not optimal, they improve by far those of the methods cur-
rently used by managers.

On the other hand, an analysis of the sensitivity of planning costs to
the volume of demand shows that a piecewise almost linear relation ex-
ists between those two variables. In this sense, the deterministic strat-
egy is very inefficient. As a future line of research, we aim to incorpo-
rate new uncertainties to the problem, as those associated to the pro-
jected demands.
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Appendix.

Results of the Biweekly approach

Table 4
Costs of the stochastic, flexible and deterministic production plans for the sixty-four scenarios. The differences are reported with respect to the cost of the sto-
chastic plan.

Scenarios Stochastic Deterministic Flex

Cost Gap

1 $ 85,468,941 Infeasible $ 122,355.136 43%
2 $ 129,281,757 Infeasible $ 117,233,591 −9%
3 $ 118,287,590 Infeasible $ 116,877,803 −1%
4 $ 102,246,024 Infeasible $ 116,877,803 14%
5 $ 102,845,578 Infeasible $ 118,343,364 15%
6 $ 118,680,040 Infeasible $ 117,233,591 −1%
7 $ 99,357,895 Infeasible $ 117,233,591 18%
8 $ 95,854,851 Infeasible $ 116,877,803 22%
9 $ 104,970,622 Infeasible $ 118,135,512 13%
10 $ 81,994,280 Infeasible $ 117,233,591 43%
11 $ 102,445,922 Infeasible $ 117,233,591 14%
12 $ 83,974,700 Infeasible $ 116,877,803 39%
13 $ 100,312,924 Infeasible $ 119,421,228 19%
14 $ 93,348,890 Infeasible $ 117,233,591 26%
15 $ 97,181,094 Infeasible $ 117,233,591 21%
16 $ 112,074,694 Infeasible $ 116,877,803 4%
17 $ 89,994,859 Infeasible $ 115,431,511 28%
18 $ 110,428,807 Infeasible $ 117,233,591 6%
19 $ 105,243,207 Infeasible $ 117,233,591 11%
20 $ 87,152,282 Infeasible $ 116,877,803 34%
21 $ 94,715,857 Infeasible $ 120,133,122 27%
22 $ 121,793,273 Infeasible $ 116,877,803 −4%
23 $ 116,038,462 Infeasible $ 116,877,803 1%
24 $ 89,397,903 Infeasible $ 116,877,803 31%
25 $ 93,200,094 Infeasible $ 121,119,887 30%
26 $ 96,324,497 Infeasible $ 117,233,591 22%
27 $ 87,917,272 Infeasible $ 116,877,803 33%
28 $ 123,400,305 Infeasible $ 116,877,803 −5%
29 $ 76,521,126 Infeasible $ 124,222,359 62%
30 $ 92,819,455 Infeasible $ 117,233,591 26%
31 $ 85,688,603 Infeasible $ 117,233,591 37%
32 $ 79,505,734 Infeasible $ 116,877,803 47%
33 $ 77,214,800 Infeasible $ 118,446,965 53%
34 $ 106,851,172 Infeasible $ 117,233,591 10%
35 $ 106,034,868 Infeasible $ 117,233,591 11%
36 $ 123,515,179 Infeasible $ 116,877,803 −5%
37 $ 108,582,901 Infeasible $ 118,446,965 9%
38 $ 99,866,701 Infeasible $ 117,233,591 17%
39 $ 104,197,549 Infeasible $ 117,233,591 13%
40 $ 87,288,358 Infeasible $ 116,877,803 34%
41 $ 105,117,754 Infeasible $ 121,119,887 15%
42 $ 105,102,529 Infeasible $ 117,233,591 12%
43 $ 104,726,435 Infeasible $ 116,877,803 12%
44 $ 96,239,351 Infeasible $ 116,877,803 21%
45 $ 87,616,771 Infeasible $ 121,119,887 38%
46 $ 94,245,901 Infeasible $ 117,233,591 24%
47 $ 85,933,543 Infeasible $ 117,233,591 36%
48 $ 96,771,065 Infeasible $ 116,877,803 21%
49 $ 120,415,559 Infeasible $ 121,119,887 1%
50 $ 125,778,497 Infeasible $ 117,233,591 −7%
51 $ 86,943,430 Infeasible $ 117,233,591 35%
52 $ 88,863,366 Infeasible $ 116,877,803 32%
53 $ 99,461,316 Infeasible $ 118,343,364 19%
54 $ 87,722,590 Infeasible $ 117,233,591 34%
55 $ 81,841,358 Infeasible $ 117,233,591 43%
56 $ 97,316,377 Infeasible $ 116,877,803 20%
57 $ 102,439,968 Infeasible $ 118,343,364 16%
58 $ 76,572,451 Infeasible $ 117,233,591 53%
59 $ 79,988,282 Infeasible $ 117,233,591 47%
60 $ 82,221,585 Infeasible $ 116,877,803 42%
61 $ 75,632,443 Infeasible $ 118,343,364 56%
62 $ 76,799,511 Infeasible $ 117,233,591 53%
63 $ 82,567,121 Infeasible $ 117,233,591 42%
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Scenarios Stochastic Deterministic Flex

Cost Gap

64 $ 109,007,919 Infeasible $ 116,877,803 7%
Expected $ 96,891,656 – – Average 23%

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jenvman.2021.113157.
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