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Abstract

Background

Three arthropod-borne viruses (arboviruses) causing human disease have been the focus

of a large number of studies in the Americas since 2013 due to their global spread and epi-

demiological impacts: Zika, dengue, and chikungunya viruses. A large proportion of infec-

tions by these viruses are asymptomatic. However, all three viruses are associated with

moderate to severe health consequences in a small proportion of cases. Two mosquito spe-

cies, Aedes aegypti and Aedes albopictus, are among the world’s most prominent arboviral

vectors, and are known vectors for all three viruses in the Americas.

Objectives

This review summarizes the state of the entomological literature surrounding the mosquito

vectors of Zika, dengue and chikungunya viruses and factors affecting virus transmission.

The rationale of the review was to identify and characterize entomological studies that have

been conducted in the Americas since the introduction of chikungunya virus in 2013, encom-

passing a period of arbovirus co-circulation, and guide future research based on identified

knowledge gaps.

Methods

The preliminary search for this review was conducted on PubMed (National Library of

Health, Bethesda, MD, United States). The search included the terms ‘zika’ OR ‘dengue’
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OR ‘chikungunya’ AND ‘vector’ OR ‘Aedes aegypti’ OR ‘Aedes albopictus’. The search was

conducted on March 1st of 2018, and included all studies since January 1st of 2013.

Results

A total of 96 studies were included in the scoping review after initial screening and subse-

quent exclusion of out-of-scope studies, secondary data publications, and studies unavail-

able in English language.

Key findings

We observed a steady increase in number of publications, from 2013 to 2018, with half of all

studies published from January 2017 to March 2018. Interestingly, information on Zika virus

vector species composition was abundant, but sparse on Zika virus transmission dynamics.

Few studies examined natural infection rates of Zika virus, vertical transmission, or co-infec-

tion with other viruses. This is in contrast to the wealth of research available on natural infec-

tion and co-infection for dengue and chikungunya viruses, although vertical transmission

research was sparse for all three viruses.

Introduction

Arboviruses, or arthropod-borne viruses, comprise a diverse group of viruses mostly transmit-

ted by mosquitoes and ticks, including globally spreading viruses causing human disease, such

as Zika, dengue, and chikungunya viruses. The term arbovirus does not encompass a taxo-

nomically distinct group, but these viruses have similar life-history and transmission patterns

that make information gleaned from one virus potentially useful to the understanding, and

therefore prevention and control, of the others.

Since its identification in Uganda in 1947, Zika virus (Flavivirus, Flaviviridae) has been,

until recently, confined only to Africa and Asia [1]. The virus ultimately reached the Americas

in late 2014, resulting in the declaration of a Public Health Emergency of International Con-

cern by the World Health Organization [2]. To date, 86 countries have reported evidence of

mosquito-transmitted Zika virus infection. [3] Brazil currently faces the greatest burden of

Zika virus infections [4]. Dengue fever, caused by four different serotypes of dengue virus (Fla-
vivirus, Flaviviridae) is the most common arboviral disease that affects humans– 50 million

people contract it each year, and an estimated 22,000 die from severe dengue [5]. Dengue is

hyperendemic in the Americas, with cyclic epidemics occurring every three to five years [6].

Chikungunya virus (Alphavirus, Togoviridae) was first isolated in Tanzania in 1952 [7]. In the

early 2000s, chikungunya virus cases and outbreaks were identified in countries in Africa,

Asia, and Europe [7]. In 2013, it emerged in the Americas in Saint-Martin, and within the first

year, over a million new cases were reported, spreading to 45 countries in the Latin American

and Caribbean region [8].

A large proportion of Zika, dengue, and chikungunya viral infections are asymptomatic [9–

11]. However, all three viruses are associated with moderate to severe health consequences in a

small proportion of cases, with neonates, young children and/or older age groups at higher

risk. Symptoms of Zika viral infection include rash, fever, arthralgia, and conjunctivitis [11].

More importantly, since its initial emergence in the Americas, Zika virus has been confirmed

as a cause of congenital abnormalities (in infants born to women infected with Zika virus
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during pregnancy) and as a trigger of Guillain-Barré Syndrome [12]. Symptoms of dengue

viral infection include rash, fever, arthralgia, and nausea. Some of the more severe symptoms

of dengue viral infection may include deadly hemorrhage and plasma leak [9]. Symptoms of

chikungunya viral infection include rash, fever, and arthralgia that may persist for an extended

duration [7].

Two mosquito species, Aedes aegypti and Aedes albopictus, are among the world’s most

prominent arboviral vectors. Ae. aegypti originated in sub-Saharan Africa as a sylvatic species

and was introduced to the Americas via ships soon after European arrival in the 1400s [13].

The species became domesticated and is now endemic to the Americas and the Asia-Pacific.

The range of Ae. albopictus was restricted to Asia until the latter part of the 20th century. It is

thought to have been introduced to the Western hemisphere through a shipment of used tires

in 1985 and has expanded its territory to over 40% of the world’s landmass over the course of

the past 30 years [14–16].

This review summarizes the state of the literature surrounding the vectors of Zika, dengue

and chikungunya viruses and factors affecting virus transmission in the Americas, with a focus

on public health implications. Waddell et al. [17] conducted a comprehensive scoping review

of the Zika virus literature in 2016. However, the authors identified a limited scope of literature

on vector studies, and none specifically looked at vector populations of the Americas,

highlighting the need for a scoping review focusing on this area given its relevance in under-

standing arboviral disease risk in the region. This scoping review aims to identify and charac-

terize the literature pertaining to mosquito species vector competence and aspects of virus

transmission dynamics in the Americas since the introduction of chikungunya in 2013. This

timeframe includes the introduction of Zika virus and the ongoing co-circulation of three

globally spreading arboviruses, namely Zika, dengue and chikungunya viruses.

Methods

This study’s search strategy and data extraction protocol were developed a priori. The list of

definitions for each search term and the data characterization and utility form are available

upon request. The review was conducted using PRISMA guidelines for scoping reviews [18].

See S2 Table for this scoping review’s checklist. The preliminary search for this review was

conducted on PubMed (National Library of Health, Bethesda, MD, United States). The search

included the terms ‘zika’ OR ‘dengue’ OR ‘chikungunya’ AND ‘vector’ OR ‘Aedes aegypti’ OR

‘Aedes albopictus’. The search was conducted on March 1st of 2018, and included all studies

since January 1st of 2013. We chose the year 2013 as a start date for our search to reflect the

timing of chikungunya virus spread to the Americas, followed in 2014 by Zika virus. These

years are thus characterized by co-circulation of multiple globally spreading arboviruses in the

region. Upon selection of potentially relevant articles, studies were characterized according to

main characteristics including study setting, virus of interest, study design, methods of mos-

quito collection and analysis, vector species discussed, and main findings. Zotero (Center for

History and New Media, George Mason University, United States) was initially used for title

and abstract screening. All studies were subsequently transferred to Excel (Microsoft Corpora-

tion, Redmond, WA, United States) for data characterization and extraction. Two independent

reviewers completed each step of the review following the broad initial screening, which was

conducted by one reviewer.

Articles were selected if they were related to vector species composition and/or virus trans-

mission dynamics, if they were related to Zika, dengue and/or chikungunya arboviruses, and if

they were related to the ongoing virus circulation in the Americas. Other inclusion criteria

included availability of an English language version and investigation of primary data. Studies
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that specifically examined the impacts of vector control measures, or studies that were unre-

lated to vector-borne aspects of disease, vector competence or entomological measures, were

excluded due to the degree of scope expansion that would be caused by their inclusion.

Results

Descriptive statistics of scoping review

The search yielded 6267 results. All records were screened, and 5919 were not deemed relevant

based on title and abstract content. A total of 348 screened full-text studies were examined for

eligibility, and ultimately 96 studies were included in the scoping review (Fig 1; S1 Table). The

vast majority of studies were performed exclusively in the field, in the laboratory, or using a

modelling framework, and most studies were conducted exclusively on Ae. aegypti (Table 1).

Studies focusing exclusively on dengue virus were the most numerous, followed by studies

focusing exclusively on Zika virus, while studies focusing on chikungunya virus or on a combi-

nation of arboviruses were the least numerous (Table 1). Studies on virus transmission dynam-

ics were the most numerous, while studies on aspects of both vector species composition and

virus transmission dynamics were the least numerous (Table 1). The average monthly number

of studies hovered between 0 and 2 from 2013 to 2016, then increased to 3 or more in 2017

and 2018 (Fig 2), closely reflecting the introductions of chikungunya and Zika viruses in the

Americas and subsequent epidemics, respectively.

Vector species composition

Zika virus. There is extensive evidence that Ae. aegypti mosquitoes are able to transmit

Zika virus in both the laboratory [19–29] and in the field [30–32]. Ae. albopictus mosquitoes

were also able to transmit Zika virus in experimental studies [22,23], but studies in which both

Ae. aegypti and Ae. albopictus were captured found no Zika virus-infected Ae. albopictus
[31,32]. Gendernalik et al. [33] and O’Donnell et al. [25] report that Ae. vexans mosquitoes are

also experimentally competent vectors of Zika virus, but no studies indicated natural Ae. vex-
ans infection with Zika virus. Cx. quinquefasciatus has been identified by predictive models as

a potential vector for Zika virus [34], as have Sabethes and Haemagogus spp. [35]. Seven studies

found that Cx. quinquefasciatus mosquitoes were refractory to Zika virus when exposed to

infectious blood meals [29,36–42]. Ferreira-de-Brito et al. [31] reported that no Cx. quinque-
fasciatus captured in Brazil were positive for Zika virus. In contrast, Guedes et al. [43] detected

Zika virus in the midgut, salivary glands and saliva of artificially fed Cx. quinquefasciatus cap-

tured in Brazil, using RT-PCR and transmission electron microscopy. The same study also

reported Zika virus isolated from two field-caught Cx. quinquefasciatus in Brazil.

Dengue virus. Ae. albopictus [44–47] and Ae. aegypti [27,45,46,48–50] are both experi-

mentally competent to transmit dengue virus. Infection by the virus is observed in field popu-

lations of Ae. albopictus [51–54], Ae. aegypti [51,52,54–62] and Cx. quinquefasciatus [56],

although the latter was not identified as a competent vector species experimentally.

Chikungunya virus. Ae. aegypti [46,63–68], Ae. albopictus [46,64,66–69], Aedes terrens
[70], and Haemagogus leucocelaenus [70] are all experimentally competent to transmit chikun-

gunya virus. Chikungunya virus transmission in Ae. aegypti has also been observed in the field

[30,59,71,72].

Virus transmission dynamics

Vector competence factors. Four studies measured the effect of temperature on vector

competence [47,63,64,73]. Adelman et al. [63] found that under silenced RNAi conditions, Ae.
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aegypti were more predisposed to chikungunya infection at lower temperatures. Alto et al. [64]

found that larger fluctuations in diurnal temperature range led to higher rates of chikungunya

infection, and Xiao et al. [47] found that maximum dengue infection rates occurred at 31˚C.

Mordecai et al. [73] modelled Ae. aegypti and Ae. albopictus transmission in the Americas and

found that mean temperature data accurately reflected Zika, chikungunya and dengue human

case data. Transmission was found to occur between 18 and 34˚C and maximal transmission

was observed between 26–29˚C, with less certainty surrounding the critical thermal minimum

than the critical thermal maximum [73]. Ae. albopictus was found to perform better in cooler

temperatures [73]. Buckner et al. [45] found that the interaction of low temperature and low

food availability increased Ae. aegypti and Ae. albopictus susceptibility to DENV-1 serotype

infection.

Three studies examined the effects of larval competition on dengue vector competence

[44,45,74]. Bara et al. [44] found that Ae. albopictus larval competition resulted in significantly

longer development times, lower emergence rates, and smaller adults, but did not significantly

affect the extrinsic incubation period of DENV-2 virus. Kang et al. [74] found that larval-stage

crowding and nutritional limitation led to lower survival rates until pupation, lower blood

Fig 1. Summary of screening and exclusion steps of this scoping review’s methodology, and resulting number of publications

after each step.

https://doi.org/10.1371/journal.pone.0220753.g001
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feeding success, slower development, smaller adult body size, and lower susceptibility to

DENV-2 infection. Four studies examined a variety of blood meal characteristics on arboviral

infection rate [23,24,49,75]. Fresh Zika-infected blood meal was associated with significantly

higher infection rates than frozen Zika-infected blood meal [23]. Similarly, Zika-infected

whole blood meal was associated with significantly higher infection rates than Zika-infected

protein meal [24]. Hill et al. [49] studied the impact of antibiotics on dengue infection rate and

mosquito fertility, and found no significant association in Ae. aegypti. Mosquitoes exposed to

DENV-2 were more likely to re-feed than those that were unexposed [75]. Sylvestre et al. [76]

studied the impact of DENV-2 infection on Ae. aegypti life history traits, and found that it sig-

nificantly affected feeding behaviour, survival, fecundity, and oviposition success.

Vector infection rate. Two studies conducted in Brazil exclusively examined infection

rates by Zika virus in wild mosquito populations (Table 2). Ferreira-de-Brito et al. [31]

reported three Zika-infected pools of Ae. aegypti, but no Zika-infected Cx. quinquefasciatus or

Ae. albopictus pool [31], out of 468 tested pools among the three species. Ayllón et al. [32]

tested 406 Ae. aegypti and 11 Ae. albopictus field-collected individuals, and found three Zika-

infected Ae. aegypti individuals.

Six studies reported exclusively on dengue infection rates in wild mosquito populations

(Table 2). Cecı́lio et al. [77] observed four positive pools, out of 54 tested, among Aedes mos-

quitoes collected in two regions of Brazil over the course of 17 months, through the installation

of ovitraps in public schools. Cruz et al. [57] detected eight positive pools, out of 50 Ae. aegypti
pools, collected in Mato Grosso, Brazil. Martı́nez et al. [62] reported two positive pools, out of

226 Ae. aegypti pools, collected in Mexico. Claderón-Arguedas et al. [78] reported nine positive

pools, out of 35 Ae. albopictus pools, collected in Costa Rica. Pérez-Pérez et al. [54] reported

Table 1. Number of publications included in the scoping review, for each review section, study design, and arbovi-

rus and mosquito vector species of interest.

Theme Category Number of publications

Section Vector Species Composition 29

Virus Transmission Dynamics 42

Both sections 25

Study design Field 16

Laboratory 40

Modelling 27

Field and Laboratory 9

Field and Modelling 3

Laboratory and Modelling 1

Virus of interest Zika 30

Dengue 45

Chikungunya 10

Multiple 11

Mosquito species of interest Ae. aegypti 52

Ae. albopictus 6

Cx. quinquefasciatus 3

Ae. aegypti and Ae. albopictus 19

Ae. aegypti and Cx. quinquefasciatus 1

Ae. albopictus and Cx. quinquefasciatus 0

Ae. aegypti, Ae. albopictus and Cx. quinquefasciatus 1

Others 12

None specifically 2

https://doi.org/10.1371/journal.pone.0220753.t001

A scoping review of entomological studies on Zika, dengue and chikungunya virus vectors

PLOS ONE | https://doi.org/10.1371/journal.pone.0220753 February 6, 2020 6 / 17

https://doi.org/10.1371/journal.pone.0220753.t001
https://doi.org/10.1371/journal.pone.0220753


Fig 2. Average monthly number of publications included in the scoping review, for each year since 2013, out of a total of 96. �Year-to-date on March 1st 2018.

https://doi.org/10.1371/journal.pone.0220753.g002

Table 2. List of studies that report a proportion of positive mosquito pools for any or a combination of Zika, dengue and chikungunya viruses, along with informa-

tion on authors, year and country of location of the study, and mosquito species of interest.

Authors Year Location Mosquito species Pools tested Zika rate (%) Dengue rate (%) Chikungunya rate (%)

Ferreira-de-Brito et al. 2016 Brazil Aedes sp. and Cx. quinquefasciatus 468 0.64 ø ø
Ayllón et al. 2017 Brazil Ae. aegypti and Ae. albopictus 178 1.12 ø ø

Martı́nez et al. 2014 Mexico Ae. aegypti 226 ø 0.88 ø
Calderón-Arguedas et al. 2015 Costa Rica Ae. albopictus 35 ø 25.71 ø

Cecı́lio et al. 2015 Brazil Aedes sp. 54 ø 7.41 ø
Cruz et al. 2015 Brazil Ae. aegypti 50 ø 16.00 ø

Pérez-Castro et al. 2016 Colombia Ae. aegypti 34 ø 61.76 ø
Pérez-Pérez et al. 2017 Colombia Ae. aegypti and Ae. albopictus 407 ø 32.43 ø

Dı́az-González et al. 2015 Mexico Ae. aegypti 557 ø ø 3.23

Cevallos et al. 2018 Ecuador Ae. aegypti 22 14.29 ø 12.50

Dzul-Manzanilla et al. 2015 Mexico Ae. aegypti 284 ø 9.51 3.17

Cigarroa-Toledo et al. 2016 Mexico Ae. aegypti 27–237� ø 0.00 0.84–7.40�

Farraudière et al. 2017 Martinique Ae. aegypti 414 ø 1.21 2.66

�Total number of pools tested is not stated, but number of sampled mosquitoes, and maximum number of mosquitoes per pool, are stated.

https://doi.org/10.1371/journal.pone.0220753.t002
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132 positive pools, out of 407 tested, collected in Colombia. One of the positive pools was Ae.
albopictus, and the remainder were Ae. aegypti. Pérez-Castro et al. [79] reported 21 positive

pools, out of 34 tested, in Ae. aegypti in Colombia.

A study measured the naturally-occurring prevalence of chikungunya virus in wild mos-

quito populations (Table 2). Dı́az-González et al. [72] reported 18 Ae. aegypti positive pools in

Mexico, out of 557 tested. A study reported on the prevalence of both chikungunya and Zika

viruses among Ae. aegypti in Ecuador (Table 2) [30]. Three studies tested both chikungunya

and dengue viruses in wild mosquito populations (Table 2). Chikungunya, but not dengue,

was detected in Ae. aegypti in Mexico by Cigarroa-Toledo et al. [71], although both chikungu-

nya and dengue viruses were isolated in Mexico in Ae. aegypti by Dzul-Manzanilla et al. [59],

and in Martinique by Farraudière et al. [61].

Vertical transmission. Three studies reported on vertical transmission of dengue virus

[58,60,80], and one [81] reported on the vertical transmission of Zika virus. Buckner et al. [80]

found a vertical transmission rate of DENV-1 of 11.11% in Ae. albopictus and of 8.33% in Ae.
aegypti. Da Costa et al. [58] observed dengue infection rates among third and fourth instar Ae.
aegypti between 1.14% and 2.41% in Brazilian municipalities, and Espinosa et al. [60] observed

one DENV-3 positive male Ae. aegypti pool, collected in Argentina. Thangamani et al. [81]

experimentally injected mosquitoes with Zika virus and observed Zika virus infection in Ae.
aegypti offspring, but not Ae. albopictus. Six filial Ae. aegypti pools out of 69 tested were found

positive for Zika virus [81].

Transmission risk modelling. Seven studies modelled transmission dynamics for Zika

virus [40,82–87]. Lourenço et al. [40] used vectorial capacity as a means of prediction, Marini

et al. [82] and Majumder et al. [83] used vector abundance and human case data, and Villela

et al. [84] and Ospina et al. [85] used disease notification and natural history. Rojas et al. [86]

found attack rates in Girardot and San Andres, Colombia to be highest among females, aged

20–49. Fitzgibbon et al. [87] report that early host and vector heterogeneity significantly affect

final epidemic size.

Eleven studies modelled dengue transmission dynamics [88–99]. Lee et al. [95] constructed

a predictive model that accurately foresaw 75% of dengue outbreaks in Colombia. Reiner et al.

[88] reported that social proximity drives fine-scale heterogeneity in dengue transmission

rates based on data from Peru. Three studies reported that meteorological variables including

temperature and humidity are important determinants of transmission dynamics [89,90,

92,93], and one study found that transovarial transmission plays an important role in trans-

mission dynamics depending on basic reproductive number [91]. Liu-Helmersson et al. [96]

predicted an increase in diurnal temperature range and increased dengue epidemic potential

under climate changes in cold, temperate and extremely hot climates where mean tempera-

tures are far from 29˚C. Velasques-Castro et al. [97] studied Ae. aegypti dynamics in relation

to host spatial heterogeneity and generated a dengue infection risk map, based on host dynam-

ics. Taber et al. [98] modelled the colonization of Pennsylvania by Ae. albopictus together with

corresponding risk of dengue.

One study estimated chikungunya transmission risk according to temperature threshold

for breeding and adult mosquitoes in Argentina [99]. The authors suggest that temperatures

conducive to Ae. aegypti breeding and transmission are present during September and April in

northeastern Argentina, and in January in southern Argentina. A study compared endemic

and transient chikungunya and dengue transmission dynamics, and the role of virus evolution

[100]. They found that reducing biting rate and vector-to-susceptible-host ratio were the most

effective at reducing basic reproductive number. A study modelled transmission risk of Zika,

dengue and chikungunya and found temperature data to match well with human case data

[73].
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Strain infectivity and co-infection. Six studies examined the infectivity of different den-

gue viral strains, and the impact of co-infection [50,74,101–104]. Muturi et al. [50] found that

infection with DENV-4 rendered Ae. aegypti significantly less susceptible to secondary infec-

tion with DENV-2. Kang et al. [74] modelled interactions between dengue viral serotypes. Qui-

ner et al. [101] studied the infectivity of different isolates of DENV-2, and found NI-2B to have

a replicative advantage over NI-1 until 12 days following infection, after which the advantage

had dissipated. Quintero-Gil et al. [102] found that the DENV-2 serotype performed with a

thousand-fold greater efficiency than the DENV-3 serotype, upon co-infection. In parallel, Ser-

rato-Salas et al. [103] found that Ae. aegypti were significantly less susceptible to secondary

dengue infection, after having been challenged with an inactive version of the virus. Vazeille

et al. [104] found that DENV-4 outperformed DENV-1 in Ae. aegypti upon co-infection.

Nuckols et al. [46] artificially infected Ae. aegypti and Ae. albopictus with chikungunya and

DENV-2 simultaneously, separately, and in reverse order. Simultaneous dissemination was

detected in all groups upon co-infection, and co-transmission occurred at low rates [46]. Rück-

ert et al. [27] found that the co-infection of Ae. aegypti with Zika, chikungunya and dengue

viruses minimally affected vector competence, and that vectors were able to transmit each viral

pair, as well as three viruses simultaneously. Alto et al. [69] found Ae. aegypti and Ae. albopic-
tus to be susceptible to Indian Ocean and Asian chikungunya virus genotypes.

Human disease risk. Five articles studied correlations between entomological measures

and risk of human dengue infection [105–109]. One study conducted in Peru found that Ae.
aegypti density was not associated with an increased risk of seroconversion [105]. One study in

Acre, Brazil found that Ae. aegypti density and risk of dengue increased with tourism and case

importation [106]. A study in Mexico City found a positive correlation between dengue inci-

dence and Ae. aegypti indoor abundance, as well as monthly average temperature and rainfall

[107]. Another study conducted in Peru found that an individual’s likelihood of being bitten in

the home was directly proportional to time spent in the home, and body surface area. They did

not find age or gender to be significant predictors [108]. Oliveira et al. [109] reported the circula-

tion of four dengue serotypes in Brazil introduced between 2001 and 2012 (DENV-1, DENV-2,

DENV-3, DENV-4) and reported an increase in dengue infection in Brazil during that time

period, i.e. 587 cases/100 000 in 2001 to 1561 cases/100 000 in 2012. Monaghan et al. [110] pre-

dicted the seasonal abundance of Ae. aegypti in the United States using meterorologically driven

models as a means of estimating arboviral infection risk [110]. All 50 included cities were found

to be suitable during the summer months (July to September), while only cities in Florida and

Texas were found to have Ae. aegypti abundance potential during the winter months (December

to March). Lo and Park [111] found that regions of Brazil with elevated temperature and precipi-

tation were more conducive to Ae. aegypti presence and Zika virus cases. Da Cruz Ferreira et al.

[112] found that dengue occurrence increased by 25% when the average number of mosquitoes

caught by traps increased by 0.1 per week. Stewart-Ibarra and Lowe [113] assessed the effect of

climatic and entomological variables on intra-annual variability in dengue incidence in Southern

Ecuador. Da Rocha Taranto et al. [114] examined the relationship between vector collection, spe-

cies composition, hatching rates, and population density on dengue incidence. Hatching rate

was found to be affected by population density and climate, and presence of vectors was associ-

ated with dengue incidence [114]. Ernst et al. [94] found no correlation between Ae. aegypti den-

sity and human age structure between two cities with different dengue transmission dynamics.

Discussion

Our scoping review included studies focused on vector species composition and arbovirus trans-

mission dynamics of Zika, dengue and/or chikungunya in the Americas. We observed a steady
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increase in number of publications, from 2013 to 2018, with half of all studies published from

January 2017 to March 2018. Sightly less than half of all studies included in this review were spe-

cifically pertaining to virus transmission dynamics. Around a third of all studies addressed vector

species composition. The remainder treated aspects of both sections. Most studies focused on

Aedes aegypti as the vector species of interest, had an exclusively laboratory-based or modelling-

based study framework, and focused exclusively on either Zika or dengue. One limitation of our

study is the use of a single search engine, PubMed, which may have reduced the number of

included publications in our scoping review. However, given the focus of our scoping review, we

believe this search engine should have captured almost all, if not all, relevant studies.

To determine vector competence, a species must be able to acquire, maintain, and transmit a

pathogen, which is assessed through experimental infection studies. However, these studies are het-

erogeneous in both the mosquito populations and virus strains used, as well as methods measuring

potential to transmit [115]. The detection of viral particles in wild-caught mosquitoes does not sig-

nify vector competence on its own, but it lends support to evidence from laboratory studies, when

coupled with the observation of human host-feeding behaviour. Field studies are also important to

assess the relative importance of competent vector species in disease maintenance and/or transmis-

sion. Vector competence for Zika virus has been well established for Ae. aegypti [19–32] and Ae.
albopictus [22,23], but there is a growing consensus that Cx. quinquefasciatus is not a competent

Zika virus vector, and no consensus has been reached regarding the competence of Ae vexans. A

number of studies report that Cx. quinquefasciatus is refractory to Zika virus [29,36–39,41,116].

While Zika virus has been detected in a small number of field-caught Cx. quinquefasciatus in Brazil

[42], this does not necessarily indicate their ability to transmit the virus. Interestingly, information

on Zika virus vector species composition was abundant, but sparse on Zika virus transmission

dynamics. Few studies examined natural infection rates of Zika virus [31,32], vertical transmission

[81], or co-infection with other viruses [27]. This is in contrast to the wealth of research available

on natural infection and co-infection for dengue and chikungunya viruses, although vertical trans-

mission research was sparse for all three viruses [46,50,58,77,80,101,102].

Based on the internationally recognized urgency of Zika virus infection as a public health

concern, and potential increase in the importance of this and other emerging arboviruses in

the future, further research on Zika virus transmission dynamics is of pressing need. Also,

given the ongoing co-circulation of these three globally spreading arboviruses in the Americas,

and the resulting complexity of their transmission dynamics, more integrative studies are

needed that investigate a combination of Zika, dengue and chikungunya viruses and use a vari-

ety of approaches to answer questions relating to the risk posed by these arboviruses.
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53. Gómez-Palacio A, Suaza-Vasco J, Castaño S, Triana O, Uribe S. Aedes albopictus (Skuse, 1894)

infected with the American-Asian genotype of dengue type 2 virus in Medellı́n suggests its possible

role as vector of dengue fever in Colombia. Biomed Rev Inst Nac Salud. 2017; 37: 135–142.
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