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RESEARCH NOTE

Heterologous microsatellite primers 
are informative for paca (Cuniculus paca), 
a large rodent with economic and ecological 
importance
Franco F. Roldán Gallardo1,2, Karen E. DeMatteo1,3,4, Miguel A. Rinas5 and Carina F. Argüelles1,2* 

Abstract 

Objective: This study was designed to facilitate genetic studies that would allow information on population struc-
ture and genetic diversity of natural or captive stocks of paca (Cuniculus paca), a species of ecological and socioeco-
nomic importance, by testing cross-amplification of 20 heterologous microsatellite primer pairs developed for guinea 
pigs (Cavia porcellus) and capybara (Hydrochoerus hydrochaeris).

Results: Those primers that showed the best amplification profile in blood samples were subsequently applied to 
scats and saliva samples, to evaluate their efficiency. Of the 13 microsatellite pairs that amplified in blood, one-third 
(32%) were successfully amplified in saliva and scat samples. This initial work demonstrates successful cross-amplifi-
cation in paca providing a solid and promising foundation for future genetic studies with this species. The ability to 
quantify genetic diversity using noninvasive samples from free-ranging paca is essential to developing applied man-
agement strategies for this large neotropical rodent that is not only a prey favored by wide-ranging carnivores [e.g., 
jaguar (Panthera onca), puma (Puma concolor)], but is also a species targeted by illegal hunting and wildlife trade.
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Introduction
The paca (Cuniculus paca, Linnaeus, 1766), a ground-
dwelling, herbivorous rodent, is a unique genus in the 
family Cuniculidae. The paca is the second largest neo-
tropical rodent with a broad distribution across Central 
and South America from Mexico to northeast Argentina, 
with recent introductions in Cuba and the Lesser Antil-
les [1, 2]. The species inhabits a wide range of humid 
tropical forests, preferring places near rivers or streams, 
but can also be found in grasslands, mangrove swamps, 

and agricultural areas [3]. This medium-sized animal 
(6-14 kg) is nocturnal, solitary, territorial, monogamous, 
and sedentary [4]. While it can be vector of zoonotic dis-
eases (e.g., intermediate hosts for Echinococcus vogeli; 
[5]), it is susceptible to others (e.g., leishmaniasis, trypa-
nosomiasis; [2]).

The paca is a favored prey of many carnivores [e.g., coy-
ote (Canis latrans), puma (Puma concolor), jaguar (Pan-
thera onca), bush dog (Speothos venaticus)], crocodiles, and 
heavy-bodied snakes [e.g., boa constrictor (Boa constric-
tor)], among others [2]. Furthermore, it is consumed by 
human beings, who have targeted this species for its quality 
meat [6], which is even desired by restaurants [7]. Never-
theless, paca is classified as Least Concerned by the IUCN 
due to its broad distribution, presumed large populations, 
and occurrence in protected areas [1]. However, habitat 
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fragmentation or destruction and hunting have led to local 
extinctions in the southeast portion of its distribution [8]. 
Consequently, genetic studies are needed to monitor the 
species’ status, since directed conservation efforts may be 
needed to ensure their long-term survival.

Genetic analyses with molecular markers are needed to 
reveal genetic variability at the species and individual level; 
however, no species-specific microsatellite primers have 
been developed for the paca. Microsatellites or STRs /SSRs 
(Short Tandem Repeats / Single Sequence Repeats) are 
one of the most widely and versatile genetic markers used 
in molecular ecology to address questions about the con-
servation and management of threatened and endangered 
species [9, 10]. The ability to use these markers on non-
invasive samples (e.g., scat) removes the need to capture 
animals directly (e.g., live traps) or indirectly (e.g., camera 
traps) and focuses on evidence left behind on the animal’s 
daily movements [11, 12]. While some believe primers 
designed for a particular species may not be able to amplify 
the same loci in other phylogenetically-related individuals 
unless the flanking regions, where the primers hybridize, 
are highly conserved [13, 14], others suggest this can occur 
more often than initially thought [15–18].

The ability to use heterologous primers developed for a 
closely related species has removed limits when species-
specific primers are lacking and allowed researchers to 
quickly expand studies to new species [19, 20]. Cross-
amplification has been applied several times at the inter-
face of domestic and free-ranging animals, including the 
application of domestic cat microsatellite primers to wild 
cats [11], canid-specific gender identification primers to 
bush dogs [21, 22], and domestic pig microsatellite primers 
to wild peccary [23].

Given the lack of species-specific primers for paca, this 
study drew 20 primers from 34 heterologous primers devel-
oped for the superfamily Caviodidea, which the paca shares 
with guinea pigs (Cavia porcellus; [24]) and capybara 
(Hydrochoerus hydrochaeris; [25, 26]). The 20 evaluated 
primer pairs were selected because they had an expected 
amplicon size of < 300  bp (range 106–289  bp; [24, 26]). 
While initial testing of cross-amplification would be done 
with invasive samples (e.g., blood, saliva), the long-term 
goal is to have the selected primers work with noninvasive 
samples or forensic DNA from free-ranging populations, 
including in the biological corridor proposed for northern-
central zone of Misiones, Argentina [27].

Main text
Methods
Sample collection
Blood, buccal swabs, and scats samples were obtained 
from three individual paca held at the breeding center 
of the Instituto Nacional de Tecnología Agropecuaria 

(INTA) in Aristóbulo del Valle, Misiones, Argentina. All 
sample collection was conducted by a licensed veterinar-
ian. Sample collection protocols were approved by the 
Ministerio de Ecología y Recursos Naturales Renovables 
(MEyRNR) in accordance with Law No 47, Regulatory 
Decree No 474/02, and Resolution No 509/07 of Mis-
iones Province. Collection permits were granted through 
the Directorate of Ecology and Environmental Quality 
under Provision No 033, which relates to the handling of 
animals and collection of samples.

Each paca was captured using a net and manually held 
in position. Blood and buccal swabs samples were taken 
after the animal was anesthetized using 6.5 mg/kg Zela-
zol® (Fort Dodge, Tiletamine-Solazepan). For each paca, 
3  mL of blood was extracted from the radial vein and 
collected in polypropylene tubes anticoagulated with 5% 
Ethylenediaminetetraacetic Acid (EDTA) and maintained 
at − 20 °C until subsequent treatments. In addition, three 
sterile buccal swabs were collected and placed in indi-
vidually labeled envelopes where they were allowed to 
air dry prior to storage at room temperature. Finally, six 
scat samples were collected from their cages, with each 
sample potentially representing multiple individuals, as 
two pacas were housed in the enclosure. Scat surfaces 
were swabbed in triplicate with a cotton-tipped applica-
tor soaked in 1× phosphate buffered saline solution to 
obtain cells detached from the animal’s intestinal epithe-
lium [28, 29]. Each of these swabs was placed in a 2 mL 
polypropylene tube and maintained at − 20 °C until DNA 
extractions were carried out. Scat samples were placed in 
an individually, labeled plastic bag (18-oz Whirlpak® bag-
Nasco, Fort Atkinson, WI) and maintained at − 20 °C, as 
a backup for DNA extractions.

Genetic analyses
DNA was extracted using Cetyl Trimethyl Ammonium 
Bromide (CTAB) following the corresponding extraction 
protocol for each sample type [30]. DNA integrity was 
evaluated in 1% agarose (Invitrogen™) gel and stained 
with GelRed™ (Biotium).

Of 34 potential primer pairs, 20 that would 
yield < 300 bp amplicons were selected for cross-amplifi-
cation testing in paca; 12 developed for guinea pigs (C. 
porcellus; [24]; Table 1) and 8 developed for capybara (H. 
hydrochaeris; [26]; Table 1). All primers sets were synthe-
sized by IDT® (USA) and each primer pair was optimized 
independently. Amplification assays were conducted in 
a Perkin Elmer GeneAmp System 9600 thermal cycler 
(Applied Biosystems) in a 25 μL and 15 μL of final reac-
tion volume for the primers developed for guinea pigs 
and capybara respectively, containing 1× Green GoTaq® 
Flexi Buffer, 2.0 mM (guinea pig) and 1.5 mM (capybara) 
of  MgCl2, 0.2 μM of each primer (forward and reverse), 
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0.2 mM of each dNTP, 150 µg/mL Bovine Serum Albu-
min (BSA), 1U and 0.75U GoTaq® (Promega) DNA 
Polymerase, and 2  μL of DNA. Negative controls were 
included in all assays. For those primers used in capy-
bara [26], the published annealing temperatures  (Ta) 

were used as a starting point in the cross-amplification 
tests with paca (Table 2), but were adjusted to maximize 
amplification efficiency. 

Amplification success was initially verified in 3% aga-
rose gels using the previously described technique, 

Table 1 Details of the 20 microsatellite primer pairs tested for cross-amplification in paca

The 12 primer pairs developed for guinea pigs (Aviles et al. [24]) and the 8 primer pairs developed for capybara (Herrera et al. [26]) are detailed in the table. Reported 
for each primer are the identification (ID), the forward primer sequence (F), the reverse primer sequence (R), the published annealing temperature (Ta), the published 
expected fragment size (bp), and original reference for these primers. An “*” highlights the seven of heterologous primer pairs that could not be consistently scored 
and interpreted. The repeat motif numbers were not reported in Aviles et al. [24]

ID Sequence (5′ to 3′) Repeat motif Ta (ºC) Size range (bp) References

CUY5 F: GGC CAA AGC AGG AAT GTC TA CA 55 141–163 Aviles et al. [24]

R: TAG GGC AAG CAT TGA TGA TG

CUY6* F: TGG CTT GCT TTC TCT TTG GT CA 55 158–168

R: CTG TGC TCA GCA TTG CAT TT

CUY7 F: GAT GCA GTG CAG AGG AGT CA CA 55 183–197

R: TGT GTG GTT TTG TGT GTG AGG 

CUY8* F: TGA TTG CAC CTG AGA AGT GG TC 55 181–217

R: CCA AGT GTT CTT GGT GCT TG

CUY9 F: GCT GGA ATG CAA GAC AAG C GT 55 116–130

R: TGA GTT TTC AGC TGT GAT GAGT 

CUY10* F: TTC CAA GCA TTT CAG AAA ACA GT 55 106–128

R: TGA CTT CCC AAC CAA GGA AA

CUY17 F: TGA TGG ACA ATA TAC TGG GAACC TC 55 152–170

R: TAG CAT GCA TGA AGC CCT AA

CUY18* F: TGT CAC TTC TCA CTC CAC CA CA 55 176–214

R: TCC CAA ACC TCT TGT TTG CT

CUY22 F: CGA ACA TGC CAA GCA GAT TA TC 55 206–232

R: ACA CCA GTT CCT TGC CAC AT

CAVY2 F: GGC CAT TAT GCC CCC CAA C AC 55 124–154

R: AGC TGC TCC TTG TGC TGT AG

CAVY11* F: CCG TGC TTT TCC TGT CTT TG CT 55 140–180

R: TGG ACC CCA ATC TGA CAT AG

CAVY12 F: AGA ATG CCT TTG GGA CTG G AG 55 143–187

R: AGA TCT TGC CTC TGC ACT TG

CAPY1* F: GGA ATT CCA AAA GAC AAC AGTTA (GT)12 59 185 Herrera et al. [26]

R: TCT CTC CTC AAA ACA ACA ACAGA 

CAPY4 F: ACA CAG GTG CAT TTG GCA TA (GT)12 60 190–192

R: ATG AGG ATG TGG CAG AAA GG

CAPY6 F: ATG GGG ACT CCA GCA AGT TA (GT)5AT-(GT)7 56 289

R: AGA TAC ATG CCT TCC CCA AA

CAPY7* F: CCT CAA CAT CCG TTT TCC TC (GT)16 60 272–278

R: CCC AAG GGT TGA AAC ACA GT

CAPY9 F: TGC CAT TCT TGT GAA AGG TG (GT)17 60 152–162

R: TGC CCG TTT CAG TGT GTA CT

CAPY10 F: CAA GGC TTC TGC TCA CTC ATT (GCT)9 56 182

R: TGA GGC ATG CAA GAG CAA 

CAPY12 F TGG GTG CCA GAA TGC ATA GTC (GT)10 61 195–197

R: GCA TTG CCA CCC CTA CCT TA

CAPY24 F: TGC AGG GAG CAC TTT ATC CA (GT)7-TT-(GT)8 54 145–157

R: CAA GCT GGG CAC AAA AAG GA
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except for 50  min at 5  V/cm. For allele discrimination, 
amplicons were analyzed using 6% vertical electrophore-
sis denaturing polyacrylamide gels (acryl:bisacrylamide 
32:2) including a 25  bp DNA Ladder (Invitrogen™) as a 
molecular marker in 0.5 × TBE for 90 min at 60 W. Gels 
were stained with Silver Sequence™ Staining Reagent kit 
(Promega) and digitally documented with Kodak Easy-
Share Z7590 camera.

To confirm successful cross-amplification of micros-
atellite regions in paca, three amplicons, obtained from 
blood samples, were randomly selected to be sequenced 
through the Sanger methodology at Macrogen, Inc. 
Korea.

Results
Thirteen (65.0%) of heterologous primers pairs ampli-
fied DNA extracted from blood (100% of samples), saliva 
(46.2% of samples), and scat (20.5% of samples), while 
seven (35.0%) of heterologous primers pairs could not 
be consistently scored and interpreted (Table  1). Seven 
(53.9%) of the microsatellite primers pairs that success-
fully cross-amplified in paca were from the twelve devel-
oped for guinea pigs (CUY5, CUY7, CUY9, CUY17, 
CUY22, CAVY2, and CAVY12; Table  1). The remain-
ing six (46.2%) successful primers were from the eight 
described for capybaras (CAPY4, CAPY6, CAPY9, 
CAPY10, CAPY12, and CAPY24; Table 1). The efficiency 
of the cross-amplification in paca was verified with cap-
illary electrophoresis on an ABI3130XL (Macrogen, Inc) 
that compared the expected repeat motif for each primer 
pair in three randomly selected primers (CUY7, CUY9, 
and CAPY24; Table 1); however, sequences could not be 
uploaded to GenBank due to the fact all were < 200 bp in 
size or below the minimum size required by this service.

Thirteen (65.0%) of the tested loci in paca produced 
amplicon size ranges similar to those in the two spe-
cies (guinea pig and capybara) for which the prim-
ers were originally developed (Table  3). Three primers 
(CAVY2, CAVY12, and CAPY9) had amplicons that fell 
within the published ranges for guinea pig and capybara. 
Eight primers (CUY7, CUY9, CUY17, CAPY4, CAPY6, 
CAPY10, CAPY12 and CAPY24) had amplicons that 
showed light shifts (± 1 to 49 bp) from the expected size 
ranges. Two primers (CUY5 and CUY22) had ampli-
cons that showed larger shifts (± 43–130  bp) from the 
published size ranges. In addition, while two primers 
(CAPY6 and CAPY10) were published as homozygous in 
capybara, both were heterozygous in paca. All 13 (100%) 
of these amplified loci were polymorphic (range: 2–6 
loci), showing different sized loci (Table 3).

Discussion
Using heterologous primers, we identified 13 micros-
atellite primers pairs that will facilitate future studies 
focused on identifying individual paca from scat or other 
noninvasive, fragmented DNA sources. Gaining genetic 
information from noninvasive samples has increased the 
amount of information that can be obtained [31], espe-
cially in the field of conservation. It also allows insight 
into species distribution [32, 33], habitat preferences and 
requirements [34, 35], and diet [36, 37]. Expanding this to 
the individual-level provides knowledge on gender iden-
tification and population ratios [38, 39], species abun-
dance [40, 41], and population density [42, 43]. Together, 
these genetic data can be used to investigate broader 
population-level questions including rates of gene flow 
[44, 45], genetic diversity [46, 47], and phylogeographic 
studies [35, 48].

Table 2 Summary of the PCR profiles for cross-amplification of microsatellites in paca using 20 heterologous primer pairs 
developed for guinea pigs and capybara

All guinea pig primers n = 12 (CUY5, CUY6, CUY7, CUY8, CUY9, CUY10, CUY17, CUY18, CUY22, CAVY2, CAVY11, and CAVY12; Aviles et al. [24] had the same PCR 
protocol. While capybara primers n = 8 (CAPY1, CAPY4, CAPY6, CAPY7, CAPY9, CAPY10, CAPY12 and CAPY24; Herrera et al. [26]) had similar conditions across the 
majority of the PCR profile, indicated by “–” in the table, they varied in annealing temperature

PCR step Guinea pig Capybara

All CAPY1 CAPY9 and CAPY24 CAPY 4, CAPY6, CAPY7, 
and CAPY10

CAPY12

Initial denaturation 95 °C for 5 min 95 °C for 5 min – – –

# of cycles 34 34 – –- –

Denaturation 95 °C for 40 s 94 °C for 30 s – –

Annealing 55 °C for 30 s 53 °C for 30 s 54 °C for 30 s 55 °C for 30 s 57 °C for 30 s

Elongation 72 °C for 40 s 72 °C for 40 s – – –

Final extension 72 °C for 5 min 72 °C for 30 min – – –

Maintenance 4 °C 4 °C – – –
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To confirm successful cross-amplification of micro-
satellite primers in paca, two different approaches were 
used. First, the Sanger sequencing results of three ampli-
cons obtained using CUY7, CUY9, and CAPY24 showed 
that sequences matched the expected repeat motif pub-
lished for microsatellite primers developed for guinea 
pigs and capybara. For paca, guinea pig primers CUY7 
and CUY9 shared the repeat motif sequence (CA) and 
(GT), respectively. With capybara primer CAPY24, the 
sequence showed the same (GT) repeat motif, with the 
exception that paca lacked the (TT) interruption. Second, 
amplification results for blood and saliva were compared 
within individuals for consistency. Again, in all cases, 
allele sizes matched. It was not possible to compare simi-
larities between blood and saliva with scat, as the latter 
represented a mixed sample from multiple pacas versus 
single individual. Therefore, the scat samples often rep-
resented different allelic combinations compared to the 
blood and saliva (Table 3).

Not surprisingly, amplification was not possible in all scat 
samples. This variation can be attributed to several factors 
including the presence of inhibitors in the extracted DNA, 
low concentrations of extracted DNA, and extremely frag-
mented or degraded DNA [31, 40, 49–52]. All of the prim-
ers (n = 13 or 100%) tested in this study were polymorphic, 
which permits individuals in a population to be differenti-
ated. It is suspected these primers would be even more 
informative in a free-ranging paca study, as those popu-
lations would likely have higher genetic variability com-
pared to captive populations [53–55]. The low number of 
founders in the used captive population would suggest it 

likely possesses some levels of homozygosity (e.g., revealed 
by monomorphic microsatellites) and low genetic vari-
ability [56]. However, we cannot rule out that the low level 
of STRs variability observed in some primers might be a 
result of allelic dropout because the heterologous status of 
the primers used or allele fixation in the population due to 
inbreeding [57].

Additional work is needed in free-ranging paca popu-
lations to determine the number of microsatellite loci 
needed to distinguish among individuals, a number that 
varies depending on the population’s genetic variability and 
the expected loci heterozygosity [49]. The number of loci 
needed must fit a balance between achieving the lowest 
probability of individual identity, while minimizing costs 
and using the lowest number of loci needed [58]. It is clear 
from these data on captive paca that the selection of loci 
that allows individuals to be identified with certainty can 
be a difficult task in small populations that have suffered 
bottlenecks in genetic variability due to genetic drift [31]. 
The 13 heterologous primers confirmed to successfully 
cross-amplify in paca are the first step to understanding 
genetic variability in free-ranging paca, which can form the 
foundation for applied management strategies for this large 
rodent that is favored by predators and humans alike.

Limitations

• The number of individuals used in the sampling was 
low and would ideally be expanded; however, INTA 
captive breeding centre limited the number author-
ized for use in this study.

Table 3 Allelic details for the 13 microsatellite primer pairs that successfully cross-amplified in paca

Specific sizes (bp) and total number of alleles (Total) are reported for each primer across the three blood samples (BI, BII, and BIII), three saliva samples (S1, S2, and S3), 
and six scat samples (Scat1, Scat2, Scat3, Scat4, Scat5 and Scat6). The thirteen pair of primers were polymorphic. No data is indicated by “–”

Primers B1 B2 B3 S1 S2 S3 Scat 1 Scat 2 Scat 3 Scat 4 Scat 5 Scat 6 Total

Guinea pig

 CUY5 204; 204 204; 202 204; 202 204; 204 204; 204 204; 202 – – 206; 206 – – 3

 CUY7 194; 186 194; 186 194; 186 194; 186 194; 186 194; 186 194; 186 198; 182 192; 192 192; 192 – 192; 188 6

 CUY9 138; 138 144; 142 142; 140 138; 138 144; 142 142; 140 140; 140 – – – 138; 138 –- 4

 CUY17 174; 162 174; 164 172; 162 – – – – – – – – –- 4

 CUY22 102; 102 102; 102 102; 100 – – – – – – – – –- 2

 CAVY2 146; 142 146; 142 146; 142 146; 142 – – – – – – – – 2

 CAVY12 160; 158 160; 158 160; 158 160; 158 – – – – – 162; 160 – – 3

Capybara –- –-

 CAPY4 172; 172 172; 172 172; 172 172; 172 170; 168 170; 170 170; 168 170; 168 – – – – 3

 CAPY6 266; 246 266; 246 268; 248 – – – – – – – – – 4

 CAPY9 154; 154 154; 154 156; 156 – – – – – – – – – 2

 CAPY10 216; 208 216; 208 216; 208 216; 208 – – 208; 206 – – – – – 3

 CAPY12 246; 198 246; 198 242; 194 – – – – – – – – – 4

 CAPY24 120; 116 122; 118 120; 116 120; 116 122; 118 120; 116 124; 118 120; 116 – – 118; 114 118; 116 6
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• The low number of founders in the INTA captive 
population likely limited genetic variability seen 
among the 13 proposed primer pairs.

• Testing of primer cross-amplification used exclu-
sively captive individuals due to difficulty in obtain-
ing invasive sample from free-ranging individuals.
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