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Abstract 

Richards equation describes the infiltration and movement of water in 

porous media, such as soils. This equation, added to the complex 

constitutive equations which characterize the soil, produces a nonlinear 

system of partial differential equations. In this work, the Richards 

equation formulated as a function of the saturation degree was solved by 

an explicit finite difference method. The matric potential was obtained as 

a function of the saturation degree, and the convergence of the solutions 

was analyzed by a modified von Neumann procedure and compared with 

numerical calculations. As a result, an analytical expression was obtained 

to determine a priori if a simulation was stable for given time and spatial 

steps. From those simulation parameters and soils properties, 

dimensionless numbers were defined to generalize the proposed method. 

Keywords: Stability analysis, Richards equation, Porous media, Water 

infiltration. 
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La ecuación de Richards se utiliza para modelar la infiltración y el 

movimiento de agua en suelos, u otro medio poroso. Esta ecuación, junto 

con las complejas ecuaciones constitutivas que caracterizan al suelo, 

resulta en un sistema de ecuaciones no lineales en derivadas parciales. 

En este trabajo, la ecuación de Richards se escribe en función del grado 

de saturación del suelo, y se resuelve por medio de un método explícito 

en diferencias finitas. El potencial matricial se obtiene como una función 

del grado de saturación y la convergencia de las soluciones numéricas se 

analiza por medio del procedimiento de von Neumann. Como resultado, 

se obtiene una expresión analítica para determinar si una simulación es 

estable con pasos temporales y espaciales dados. A partir de estos 

parámetros de simulación y las propiedades del suelo, se definen números 

adimensionales para generalizar el método propuesto. 

Palabras clave: análisis de estabilidad, ecuación de Richards, medio 

poroso, infiltración de agua. 
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The mathematical model of fluid movement in unsaturated soil is 

important in many branches of science and engineering. For example, to 

study groundwater hydrology, petroleum engineering, and agriculture 

(Celia, Bouloutas, & Zarba, 1990; Miranda, Duarte, Libardi, & Folegatti, 

2005; Saucedo, Zavala, & Fuentes, 2015). 

 It is common to apply Darcy's law when modeling water flow 

systems in porous media (Miller et al., 2013; Warrick, 1991), which, 

combined with the continuity equation, results in the Richards equation 

(Richards, 1931). This equation is the governing equation for fluid 

movement in unsaturated soil. It is a strongly nonlinear parabolic partial 

differential equation; therefore, numerical methods usually are applied to 

solve it (Berardi, Difonzo, Vurro, & Lopez, 2018; Caviedes-Voullième, 

Garcı, & Murillo, 2013; Gyrya, Lipnikov, Manzini, & Svyatskiy, 2014; Hills, 

Porro, Hudson, & Wierenga, 1989; Romano, Brunone, & Santini, 1998; 

Solin & Kuraz, 2011; Wendland & Pizarro, 2010). However, considerable 

attention should be paid to solving Richards equation to get an accurate 

discretization and an efficient solver (Jeltsch & Nevanlinna, 1981; 

Lipnikov, Moulton, & Svyatskiy, 2016; Miller et al., 2013). Besides, the 

abrupt change in the value of some parameters like the hydraulic 

conductivity during the simulation may cause stability problems (Solin & 

Kuraz, 2011). 
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 To reduce the computational time to solve this equation, the 

numerical time step may be increased, however, this change may 

increase mass balance error, and the model may not converge. So, a 

compromise between time step and mass balance error must be made. 

 Richards equation may be written based on several variables; these 

include volumetric humidity, matric potential, saturation degree, and 

different combined forms of these variables. Each expression of this 

equation presents different discretization forms. The most common 

expression is based on matric potential. This form does not need 

constitutive relationships to transform state variables, which allows a 

direct application of implicit numerical methods. However, it is necessary 

to approximate the partial derivative concerning time by a Taylor 

expansion, which introduces an extra error, and thus the model is more 

sensitive to the time step. 

 Another form of Richards equation is written as a combination of 

volumetric humidity and matric potential (Celia et al., 1990). This form 

does not need a Taylor expansion for the partial derivate with respect to 

time, and the mass balance errors are lower (Celia et al., 1990; Romano 

et al., 1998). Nevertheless, complex constitutive relationships are 

necessary to transform the state variables.  

 Richards equation can also be written as a combination based on 

saturation degree and matric potential. Since the saturation degree has a 

linear relationship with humidity, an accurate relation by Taylor expansion 

is obtained without introducing additional error in the time derivative. 
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Besides, the corresponding constitutive equations based on humidity are 

simpler than the expressions based on matric potential; therefore, this 

form can be an advantageous choice to solve the Richards equation by 

finite difference numerical methods. On the other hand, the analysis of 

the stability of the numerical methods provides important information 

about the reliability and robustness of the model. Even more in the 

Richards equation, which is considered very stiff to numerical integration 

(Berardi & Vurro, 2016). If the resulting error for a given discrete 

algorithm is large enough, the simulation diverges, and the parameters 

must be adjusted to converge the computational experiment, or the 

model must be changed in extreme cases (Jeltsch & Nevanlinna, 1981; 

Lipnikov et al., 2016; Yuste & Acedo, 2005). 

 Although there is no procedure developed to analyze the stability of 

nonlinear equations, it is possible to linearize or discard low nonlinear 

terms from the equation and apply a standard procedure for the resulting 

linear equation (Canelón & Darío, 2003). This does not apply for the 

Richards equation that is highly nonlinear (Celia et al., 1990; Romano et 

al., 1998), and therefore other methods for treating stabilities must be 

applied.  

 We have proposed a new approximation method based on a Taylor 

expansion for the Richards equation and a linearization process to 

determine a priori if the simulation is stable (Pedrozo, Rosenberger, & 

Schvezov, 2016). Thus, this manuscript's main objective is to give more 

details of both, the approximation method's numerical behavior and the 
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stability analysis. We validate the explicit finite difference model based on 

a combination of two state variables, saturation degree, and matric 

potential, with a literature case study and perform sensibility analyses for 

the time and spatial steps. We explain in depth the procedure to obtain 

the equations to make decisions about the system’s stability, and the 

proposed method was tested by using two case studies of the literature. 

Furthermore, we address the method's generalization by estimating the 

stability regions through the main parameters of the simulation. 

 

 

Computational methods 

 

 

Governing equation of the model 

 

 

The Richards equation is written as a function of both, saturation degree 

(𝑆𝑒) and matric potential (𝜓), where the 𝑧 coordinate grows upwards, is 

shown in Equation (1); and the saturation degree is defined in Equation 

(2): 
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(𝜃𝑠 − 𝜃𝑟) 𝜕𝑆𝑒

𝜕𝑡
=

𝜕

𝜕𝑧
(𝐾(𝜓) (

𝜕𝜓

𝜕𝑧
+ 1))      (1) 

 

𝑆𝑒 =
(𝜃−𝜃𝑟)

(𝜃𝑠−𝜃𝑟 )
          (2) 

 

 Where 𝑡 is time; 𝑧 is depth in the upward direction; 𝐾(𝜓) is the soil 

hydraulic conductivity; 𝜃𝑠 is the volumetric humidity of the saturated soil 

and 𝜃𝑟 is the volumetric residual humidity of the soil. Besides, we used 

the constitutive equations proposed by Mualem (1976) and modified by 

van Genuchten (1980): 

 

𝐾(𝑆𝑒) = 𝐾𝑠 ∙ 𝑆𝑒0.5 (1 − (1 − 𝑆𝑒
1

𝑚 )
𝑚

)
2

      (3) 

 

𝐾(𝜓) =
𝐾𝑠(1−(𝛼|𝜓|)𝑛−1(1+(𝛼|𝜓| )𝑛)−𝑚)

2

(1+(𝛼|𝜓|)𝑛)𝑚 2⁄       (4) 

 

𝜓(𝑆𝑒) =
−1

𝛼
√ √

1

𝑆𝑒

𝑚
− 1

𝑛

        (5) 
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 Where: 𝛼, 𝑛, and 𝑚 are parameters that depend on the kind of soil 

and 𝐾𝑠 is the saturated hydraulic conductivity of the soil. 

 

 

Numerical model 

 

 

We select an explicit finite difference method for the discretization of the 

Richards equation, where the subscript 𝑖 indicates the depth (which 

increases downward) and the superscript  𝑗 indicates the time (see Figure 

1). The equation may be written as: 

 

𝑆𝑒𝑖
𝑗+1 = 𝑆𝑒𝑖

𝑗 +
∆𝑡

∆𝑧2(𝜃𝑠−𝜃𝑟)
(𝐾 (𝜓

𝑖+
1

2

𝑗 ) (𝜓𝑖+1
𝑗 − 𝜓𝑖

𝑗 + ∆𝑧) − 𝐾 (𝜓
𝑖−

1

2

𝑗 ) (𝜓𝑖
𝑗 − 𝜓𝑖−1

𝑗 + ∆𝑧))

 (6) 
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Figure 1. Nodes scheme. 

 

 Since Equation (6) is based on both saturation degree and matric 

potential, Equation (5) is necessary to transform state variables. If an 

implicit method is used, such transformations are not accurate, and a 
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Taylor expansion would be needed. For this reason, an explicit method 

was selected.  

 The average hydraulic conductivity showed in Equation (7) 

describes the flow velocity in steady-state between two nodes at potential 

𝜓𝑖
𝑗  and 𝜓𝑖+1

𝑗
. This equation is more accurate than other averages (Schlüter, 

Vanderborght, & Vogel, 2012; Szymkiewicz & Helmig, 2011), and was 

proposed by Baker (Baker, 2000):  

 

𝐾 (𝜓
𝑖+

1

2

𝑗 ) =
1

∆𝜓+∆𝑧
(∫ 𝐾(𝜓)𝑑𝜓

𝜓𝑖 +1
𝑗

𝜓
𝑖
𝑗 + ∫ 𝐾(𝜓)𝑑𝑧

𝑧𝑖+1
𝑗

𝑧
𝑖
𝑗 )    (7) 

 

 Equation (7) is composed of two indefinite integrals, one is a 

function of matric potential, and the other is a function of the spatial step. 

It is possible to calculate the primitive of the integral that is a function of 

matric potential due to the relationship between hydraulic conductivity 

and matric potential is known (see Equation. (8)). On the other hand, 

calculating the integral in the function of the spatial step is complicated. 

For that reason, the approximation (9) is used: 

 

∫ 𝐾(𝜓𝑖
𝑗 ) 𝑑𝜓 = 𝑃𝐾(𝜓𝑖

𝑗)        (8) 
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1

∆𝑧
∫ 𝐾(𝜓)𝑑𝑧

𝑧𝑖+1
𝑗

𝑧
𝑖
𝑗 =

𝐾(𝜓
𝑖+1
𝑗 )+𝐾(𝜓

𝑖
𝑗)

2
       (9) 

 

 Introducing equations (7), (8), and (9) in Equation (6) and 

considering that 𝐾(𝜓𝑖
𝑗
)= 𝐾(𝑆𝑒𝑖

𝑗
), the result is Equation (10), which is used 

in the present model: 

 

𝑆𝑒𝑖
𝑗+1 = 𝑆𝑒𝑖

𝑗 +
∆𝑡

∆𝑧2(𝜃𝑠−𝜃𝑟)
(𝑃𝐾(𝜓𝑖+1

𝑗 ) − 2𝑃𝐾(𝜓𝑖
𝑗 ) + 𝑃𝐾(𝜓𝑖−1

𝑗 ) +
∆𝑧

2
(𝐾(𝑆𝑒𝑖+1

𝑗 ) −

𝐾(𝑆𝑒𝑖−1
𝑗 )))          (10) 

 

 

Calculation procedures 

 

 

The whole domain was discretized, and Equation (10) was applied to all 

the nodes. The calculations were made using a personal computer Intel® 

Core™ i7-3770 CPU@3.50GHz with 8 GB of RAM. We implemented the 

numerical method in Wolfram Mathematica 9.0, where we used the 

following modules: 
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 Parameter declarations: function definitions and pre-calculations. 

Particularly, 𝑃𝐾(𝜓) was calculated by Equation (8) using the “Integrate” 

command of Mathematica. 

 The iteration procedure: due to the problem boundary conditions and the 

field's initial state, after each time-step there is a change of soil humidity 

only in the shallowest nodes. So, including all the nodes in the calculation 

array is not necessary. Therefore, the algorithm identifies the deepest 

node for which humidity may increase. Let 𝑀 be the number of nodes with 

the first node (𝑖 = 0) located on the surface, and let 𝑀′ be the deepest 

node that remains in its initial state, such that 𝑀′ < 𝑀. Therefore, the 

explicit method is only applied to the subset of nodes 𝑖 = 0 𝑡𝑜 𝑀′. It should 

be noted that the value of 𝑀′ changes as iterations proceed. In this way, 

the number of calculations is reduced. The hydraulic conductivity and 

matric potential are calculated using Equations 3 and 5, respectively.  

 

 

Parameters and validation 

 

 

To validate the proposed method, we compared our numerical results with 

the models reported in the literature by Celia et al. (1990) and Wendland 
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and Pizarro (2010), considering the same boundary conditions and initial 

humidity values. The case study was the infiltration of water in sandy soil, 

which has the following parameters 𝜃𝑠=0.368 m3/m3, 𝜃𝑟=0.102 m3/m3, 

𝛼=3.35 m-1, 𝐾𝑠=9.22.10-5 m.s-1, 𝑛=2, 𝑚=0.5. 

At the beginning of the simulation, the soil humidity was low and uniform 

(0.11 m3/m3) in the whole domain, while the surface humidity was high 

and constant (0.20 m3/m3). The corresponding matric potential initial 

condition was 𝜓(0,z)=-10 m, and Dirichlet boundary conditions of 

𝜓(t,0)=-0.75 m and 𝜓(t,-1)=-10 m. The soil depth was of 1 m and the 

simulation time was 1 day. 

 The present model infiltration profiles and those reported by 

Wendland and Pizarro (2010) are shown in Figure 2. It was observed that 

they accurately match since curves overlap. This fact shows that the 

proposed model can correctly approximate the solution reported in the 

literature and produces practically the same solution. Moreover, the global 

error was lower than 1 % and has a maximum local error of 10 %, which 

was located at a depth of 0.60 m (see Figure 3), where the humidity 

gradient was the largest. These outcomes indicate that the model 

presented here was a suitable approximation. 
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Figure 2. Comparison between results of the present model and the 
model proposed by Wendland and Pizarro (2010). 

 

 

Figure 3. The local error of the present model.  



 

 

 

2022, Instituto Mexicano de Tecnología del Agua 

Open Access bajo la licencia CC BY-NC-SA 4.0 
(https://creativecommons.org/licenses/by-nc-sa/4.0/) 

 

 

464 

Tecnología y ciencias del agua, ISSN 2007-2422, 13(2), DOI: 10.24850/j-tyca-2022-02-09 

 

 

 

Sensitivity analysis 

 

 

Effect of the time step, Δt 

 

 

The first step of the analysis was to quantify the results errors as a time 

step function. One simulation was chosen as a reference, which solution 

is considered as the true value. Therefore, relative errors of simulations 

with other parameters were calculated by comparison. The reference 

simulation was obtained with the proposed model when the simulation 

time is one day and the time step is one second, which is considered small 

enough to make the temporal discretization errors negligible. To make 

the comparison, the highest local error was used, which was included in 

Equation (11): 

 

𝑀𝑎𝑥 (|
𝜓𝑖

𝑡𝑚𝑎𝑥 −𝜓𝑣𝑖
𝑡𝑚𝑎𝑥

𝜓𝑣𝑖
𝑡𝑚𝑎𝑥 |)        (11) 
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where 𝜓𝑣𝑖
𝑡𝑚𝑎𝑥 is the matric potential obtained by the proposed model with 

a time step of one second, while 𝜓𝑖
𝑡𝑚𝑎𝑥 is the matric potential obtained 

with the highest time step. Different spatial steps were considered for the 

analysis, -1/40 m, -1/64 m, and -1/80 m. Therefore, each spatial step 

has a different reference simulation to make the comparisons. 

 The results are shown in Figure 4, for the three spatial steps, and a 

wide range of time steps, from 1 to 54 seconds. A linear relationship 

between maximum relative error and time step was observed, with a 

maximum error of 0.85 %. In addition, the maximum relative error, with 

a time step of 1 second, is 0 % for each spatial step, in such case, this 

time step was taken as reference. In Figure 4, for a spatial step of -1/80 

m, the model becomes unstable and diverges for time steps larger than 

34 s for a reason that is discussed in the next section. On the other hand, 

by comparing the lines slopes, it was observed that the slope changes 

among them diminish when the absolute value of the spatial step 

diminishes; this indicates that the method is convergent for the spatial 

step.  
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Figure 4. Maximum relative error as a function of the time step for 

three different spatial steps. 

 

 In similar models based on matric potential only (Pedrozo, 

Rosenberger, & Schvezov, 2015), the instabilities occur for time steps 

larger than 26 s, and with much larger relative errors of 25 %. This shows 

that the present model based on both, the degree of saturation and matric 

potential, is more stable and presents less error. 

 The relationship between CPU time versus maximum global error 

was plotted in Figure 5 for the same three-time steps of -1/40, -1/64, 

and -1/80 m and a time step of one second. As observed and reported in 
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the literature, the error decreases as CPU time increases. It should be 

noted that the unit of CPU time label is second, these results suggest that 

the present model presents a reasonable compromise among CPU time 

and global error. 

 

 

Figure 5. CPU time as a function of the maximum relative error for 

three different spatial steps. 

 

 A typical matric potential profile versus depth for the same three 

spatial step sizes are plotted in Figure 6, for a time step of one second 

and for an elapsed time of one day from the initial condition. It is observed 

that the three profiles strongly overlap. 
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Figure 6. Humidity profile inside the soil, plots for the three different 

spatial steps (the plots are overlapping for this drawing resolution). 

 

 

Effect of the spatial step, Δz 

 

 

The model equations are developed by applying a mass balance in each 

domain element with a node in the center. The matric potential for each 

node is then an average value for each element. 
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 The comparison was made in the same portion of the domain, 

keeping track of the element portion and averaging the results’ values for 

the smaller steps as shown in Figure 7. 

 

 

Figure 7. Node scheme for different meshes and its portion of domains 

representing. 

 

 The spatial steps employed in comparing the results 

are -1/32, -1/64, 

-1/96, -1/128, and -1/192 m; the smaller time steps results are used as 

a reference, considering that the finer the mesh more accurate the results 

are. 

 Three meshes are illustrated in Figure 7, and the results for the five 

meshes are shown in Figure 8, including maximum relative error and CPU 
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time as a function of the spatial step, ∆𝑧. It was observed that the error 

increases with spatial step in a non-linear relation; the effect of spatial 

step on CPU time is not strong as the maximum relative error in a whole 

interval of a few seconds, which makes the model suitable for calculations. 

 

 

Figure 8. Effect of spatial step, for the same time step of 1 second, on 

the maximum relative error and CPU time. 
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Fourier analysis for convergence determination 

 

 

Algebraic linearization 

 

 

The conditions for convergence depend on the values of the physical 

variables and the parameters of the simulation, such as spatial and time 

steps. The convergence interval for finite difference methods was studied 

using Fourier stability analysis; however, this technique was developed 

for linear equations only, which is not the case of the present model. 

Therefore, to apply Fourier stability analysis, the following process of 

algebraic linearization was applied. 

 

First, let be: 

  

𝑎𝑖
𝑗

=
𝑃𝐾(𝜓

𝑖
𝑗)−𝑃𝐾(𝜓𝑜

𝑗)

∆𝑧∙𝑖
         (12) 

 

which gives: 
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𝑃𝐾(𝜓𝑖
𝑗) = 𝑎𝑖

𝑗 ∙ ∆𝑧 ∙ 𝑖 + 𝑃𝐾(𝜓0
𝑗 )       (13) 

 

𝑎𝑖
𝑗 , given by Equation (12), is the slope of the secant of 𝑃𝐾(𝜓) between 

the zero and the i-th nodes. 

 Using the Mualem-van Genuchten constitutive equation, the 

hydraulic conductivity can be written as: 

 

 𝐾(𝜓𝑖
𝑗 ) ≅

𝐾(𝜓0
𝑗

)−𝐾(𝜓𝑀
𝑗

)

𝑃𝐾(𝜓0
𝑗

)−𝑃𝐾(𝜓𝑀
𝑗

)
∙ 𝑎𝑖

𝑗 ∙ ∆𝑧 ∙ 𝑖 + 𝑐𝑡𝑒       (14) 

 

where 𝑀 is the number of nodes, 𝜓0
𝑗
 and 𝜓𝑀

𝑗
 are the boundary condition at 

the top and bottom surfaces of the domain, respectively. 

 On the other hand, 𝑆𝑒𝑖
𝑗  can be approximated by a Taylor expansion 

as: 

 

𝑆𝑒𝑖
𝑗 ≅ ((

𝐾(𝜓)∙𝑑𝜓

𝑑𝑆𝑒
)|

𝑚𝑎𝑥
)

−1

∙ ∆𝑧 ∙ 𝑖 ∙ 𝑎𝑖
𝑗 + 𝑆𝑒0

𝑗
     (15) 

 

where 𝐾(𝜓) ∙ 𝑑𝜓/𝑑𝑆𝑒 was evaluated in the maximum and critical value (top 

surface) which may produce or initiate the instability.  
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 Defining the values of 𝜆 and 𝜀 by Equation (16) and Equation (17), 

respectively, and introducing equation (13) to (17) in the model Equation 

(10), a linear approximation of the model equation (10) is obtained, which 

is written as Equation (18): 

 

𝜆 = (𝐾(𝜓) ∙
𝑑𝜓

𝑑𝑆𝑒
))

𝑚𝑎𝑥

∆𝑡

∆𝑧2 ∙(𝜃𝑠−𝜃𝑟 )
       (16) 

 

𝜀 =
𝐾(𝜓0

𝑗
)−𝐾(𝜓𝑀

𝑗
)

𝑃𝐾(𝜓0
𝑗

)−𝑃𝐾(𝜓𝑀
𝑗

)
∙ ∆𝑧        (17) 

 

𝑎𝑖
𝑗+1 = 𝑎𝑖

𝑗 +
𝜆

𝑖
(𝑎𝑖+1

𝑗 (𝑖 + 1) − 2𝑎𝑖
𝑗 𝑖 + 𝑎𝑖−1

𝑗 (𝑖 − 1) + 0.5𝜀 (𝑎𝑖+1
𝑗 (𝑖 + 1) − 𝑎𝑖−1

𝑗 (𝑖 − 1)))

           (18) 

 

 In particular, 𝜆 is a non-dimensional number which may be 

interpreted by analogy with the main simulation parameter in the solution 

of the heat equation by the finite difference method, which in that case is 

the product of the thermal diffusivity multiplied by the time step Δt, and 

divided by the square of the spatial step, Δz. In Equation (16), the 

expression (𝐾(𝜓) ∙ 𝑑𝜓/𝑑𝑆𝑒)(𝜃𝑠 − 𝜃𝑟 )−1 is the hydraulic diffusivity of the soil 

(Hillel, 1998), which relates the hydraulic conductivity and the soil's 

specific capacity, which is analogous to the thermal diffusivity.  
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 In the case of a linear partial derivative equation, convergence is 

analyzed using a Fourier stability analysis, known as Von Neumann 

analysis (Hirsch, 2007; Pletcher, Tannehill, & Anderson, 2012). In that 

case, the model results are stable if the rounding error in the model 

equation decreases as iterations proceed. 

 In the present case, the values of 𝑎𝑖
𝑗
 must be consistent with the 

physical phenomenon that is; since the water must be transported from 

higher to lower values of the matric potential, the values of 𝑎𝑖
𝑗
 must 

decrease after each time step iteration. To follow its evolution, the 

function 𝐺(𝛽, 𝑖) is defined as an amplification factor and calculated as: 

 

𝐺(𝛽, 𝑖) =
𝑎

𝑖
𝑗+1

𝑎
𝑖
𝑗           (19a) 

 

Where: 

 

𝐺(𝛽, 𝑖) = 1 + 𝜆 (−2 + (2 +
𝜀

𝑖
) 𝑐𝑜𝑠(𝛽)) + 𝜆 (

2

𝑖
+ 𝜀) ∙ 𝐼 ∙ 𝑠𝑖𝑛(𝛽)   (19b) 

 

|𝐺(𝛽, 𝑖)| = √(1 + 𝜆 (−2 + (2 +
𝜀

𝑖
) 𝑐𝑜𝑠(𝛽)))

2

+ (𝜆 (
2

𝑖
+ 𝜀) ∙ 𝑠𝑖𝑛(𝛽))

2

  (20) 
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where in Equation (19b), 𝐼 is the imaginary unit, and β is a phase angle. 

Details of the procedure to obtain Equation (19b) are presented in 

Appendix A. 

 The amplification factor defined here is different from that defined 

in the literature (Pletcher et al., 2012), as the ratio between the rounding 

errors at time steps 𝑗 and 𝑗+1, which does not take into account the 

physical characteristic of the boundary problem, as it was done in 

Equation (20). 

 In an infiltration problem, where the Dirichlet boundary condition 

applies, the amplification factor must be less than 1 to be consistent with 

the physical phenomenon problem. Since 𝑎𝑖
𝑗  is the gradient in the 

downward z-direction, at time 𝑗 of 𝑃𝐾(𝜓), after each time step iteration, 

the downward water transport produce a reduction in the 𝑃𝐾(𝜓) gradient, 

therefore 𝑎𝑖
𝑗+1

 will be less than 𝑎𝑖
𝑗
, and therefore 𝐺(𝛽, 𝑖) should always be 

less than one and at equilibrium tend to 1. Values of 𝐺(𝛽, 𝑖) larger than 1 

indicates that either the numerical calculations are unstable or divergent. 

 

 

Comparison between the approximation and the 

original function 
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Equation (14) and Equation (15) are the approximating for 𝐾(𝜓𝑖
𝑗 ) and 𝑆𝑒𝑖

𝑗
, 

which original functions are given by Equation (3) and Equation (10), 

respectively. 

 The soil parameter 𝛼, 𝑞, and 𝑚, for both the approximation and 

original function, are taken from the literature (Celia et al., 1990) for 

which the Mualem-van Genuchten equations were used (𝛼 = 3.35 m-1, 𝑞 

= 2 and 𝑚 = 0.5) for 𝐾(𝑆𝑒) in Equation (3) as well as in Equation (14). 

The results are shown in Figure 9 for a simulation of one week. It was 

observed an excellent correlation between approximated and original 

values. 
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Figure 9. Comparison of the value of hydraulic conductivity versus 

depth, where actual values are calculated from the constitutive 

relationship (Equation (3)) and approach values calculated from 

Equation (14). 

 

 On the other hand, for the case of the saturation degree 𝑆𝑒, the 

results are given by Equation (10) and its approximation given by 

Equation (15) are shown in Figure 10, also for a simulation time of one 

week, which was considered enough for wetting the lowest boundary of 

the domain. It is noted that the correlation is excellent for the upper part 

of the domain, which is wet, and not good for the lower part of the domain 

which is drier than the upper nodes. 



 

 

 

2022, Instituto Mexicano de Tecnología del Agua 

Open Access bajo la licencia CC BY-NC-SA 4.0 
(https://creativecommons.org/licenses/by-nc-sa/4.0/) 

 

 

478 

Tecnología y ciencias del agua, ISSN 2007-2422, 13(2), DOI: 10.24850/j-tyca-2022-02-09 

 

 

 

Figure 10. Comparison of the value of Se versus depth, where actual 

values are calculated from the finite difference scheme (Equation (10)) 

and approach values are calculated from Equation (15). 

 

 It should be noted that the approximation is accurate for the wet 

region which is the critical region for the stability analysis, and therefore 

the approximation given by Equation (15) is suitable for stability analysis. 
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Results 

 

 

The amplification factor 𝐺(𝛽, 𝑖), as a function of the relation phase (𝛽), for 

different time steps and a spatial step size of -1/64 m is shown in 

Figure 11a. The example corresponds to an infiltration problem with initial 

and boundary conditions as shown in Parameters and Validation, which 

results are obtained using the original set of equations (16), (17), and 

(20). The number of node 𝑖 is evaluated in 65 for all cases, due to the 

amplification factor increases with 𝑖, so the critical case was considered. 

 

 

Figure 11. a) Damping factor versus relative phase considering 20, 49, 

49.8 and 60 s as time steps; (b) A stable (𝛥𝑡 = 20 s) and an unstable 
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(𝛥𝑡 = 60 s) simulations; (c) A stable (𝛥𝑡 = 49 s) and an unstable (𝛥𝑡 = 

49.8 s) simulation simulations close to the convergence threshold (𝐺 = 

1); 𝛥𝑧 = -1/64 m for all cases. Reproduced from (Pedrozo et al., 2016), 

with the permission of AIP Publishing. 

 

 In Figure 11a, it can be observed that 𝐺(𝛽, 𝑖) remains below 1 for 

the shorter time step of 20 s and 49 s, and for longer steps of 49.8 s that 

is, only 0.8 s more, the values of 𝐺(𝛽, 𝑖) on relative phase values equal to 

1 are larger than 1 for a few decimals, however, for a step of 60 s the 

values of 𝐺(𝛽, 𝑖) increases well above 1 for relative phase values larger 

than 0.7. 

 The model results obtained for time step 20 s and 60 s clearly show 

stable and highly unstable behavior, respectively, as can be seen in Figure 

11b. Moreover, the instabilities occur for the lower values of the depth z. 

The transition from stable to unstable behavior was remarkably sharp as 

shown in Figure 11c, where the profiles obtained for two-time steps of 

49 s and 49.8 s show stable and unstable results, respectively, as 

predicted by the corresponding 𝐺(𝛽, 𝑖) values are shown in Figure 11a. 

 From the above results, it may be concluded that the linearized 

Fourier stability analysis accurately predicts the onset of instability in the 

calculations, which may occur for even short time steps, and that the 

largest value of 𝐺(𝛽, 𝑖), or the instability, occurs for relative phase values 

near 1. 
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 In addition, a second data set was used to test the present method 

to determine if the simulation was stable. The reference problem was the 

infiltration of water in another sandy soil with the following parameters 

(Goh, 2017): 𝜃𝑠= 0.41 m3/m3, 𝜃𝑟= 0.065 m3/m3, 𝛼= 7.5 m-1, 𝐾𝑠= 1.23.10-

5 m.s-1, 𝑛= 1.89. The soil was initially with uniform humidity (0.15 m3/m3) 

in the whole domain with a top surface at constant high humidity (0.4098 

m3/m3). The soil depth was 0.5 m, and the spatial step was fixed at -0.001 

m. 

 The results of this simulation are shown in Figure 12. It can be 

observed that 𝐺(𝛽, 𝑖) remains below one for 4.357 milliseconds, which was 

the critical time step for the current simulation. When the time step was 

slightly increased at 4.4 milliseconds, it was observed that 𝐺(𝛽, 𝑖) was 

higher than one at a relative phase near to one, then it was observed in 

Figure 12a that the simulation becomes unstable at a simulation time of 

1.76 h. On the other hand, when the simulation was performed with a 

time step of 4.357 milliseconds, the simulation was stable, even at a 

simulation time of two hours, as Figure 12c shows. 
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Figure 12. a) Damping factor versus relative phase for two-time steps; 

4.357 and 4.4 milliseconds; b) simulations were obtained for time steps 

of: 4.4 milliseconds (unstable); (c) simulations were obtained for a time 

step close to the convergence limit (𝐺 = 1) using 4.357 milliseconds 

(stable). In all cases, the spatial step is -0.001 m. 

 

 

Sensitivity to the boundary condition 

 

 

The present infiltration model also shows a high sensitivity to the applied 

boundary conditions at the top and wet surfaces. The soil reported by 

Celia (Celia et al., 1990) was taken to the current analysis. Figure 13a 

shows the amplification factor 𝐺(𝛽, 𝑖) as a function of the relative phase 

for four different values of 𝜓0 at the top surface; -1 m, -0.75 m, -0.74 m, 
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and -0.5 m. The spatial step and time step used are -1/64 m and 49 s 

respectively, that is, near the instability values for 𝛥𝑡. In Figure 13b, it 

was observed that instability increases as the top surface was more 

humid. The model was stable for a dryer condition; instability starts for 

intermediate values of humidity and becomes highly unstable for the 

highest humidity surface. The numerical instability might be because the 

higher the humidity, the faster the diffusion of humidity, and the larger 

values of gradients associated. The diffusivity was related to the 

parameter 𝜆 which value increases with diffusivity. Therefore 𝜆 becomes 

one of the critical parameters to predict the start of instability.  

 

 

Figure 13. Maximum time step vs. spatial steps for three upper 

boundary conditions, a high wet (h = -0.5 m), a medium wet (h 

= -0.75 m) and a low wet (h = -1 m). 
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 On the other hand, the model was insensitive concerning the 

condition at the lower or dry boundary. This result may be because the 

hydraulic conductivity and the function 𝑃𝐾(𝜓) were insensitive for the low 

matric potentials. 

 At this point, it was possible with the analysis proposed here, to 

establish the critical time step as a function of spatial step and boundary 

condition by using Equation (20). This was done for a spatial step of -1/64 

m and the same three previous boundary conditions which results are 

shown in Figure 13b. It was observed that as the humidity increases the 

model was more sensitive and that in all cases the critical points are near 

the top or wet surface; also that the relation between critical time step 

versus spatial is not linear. As a result, problems with high humidity 

conditions will require shorter time steps and then longer CPU time. 

 

 

 

Results of the generalization  
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In the previous section, the linear stability analysis was applied in two 

infiltration problems proposed in the literature (Celia et al., 1990) and 

(Goh, 2017). The objective of the present section is to expand the 

application of the procedure to infiltration in other soils with different 

characteristics using the Richards equation; that is different values of the 

parameters 𝜆 and 𝜀 defined by Equation (16) and Equation (17), 

respectively. 

 Analyzing the Equation (19b), for the amplification factor 𝐺(𝛽, 𝑖), it 

was observed that it depends on the parameters 𝜆 and 𝜀 and two 

variables; the phase angle (𝛽) and the node number (𝑖). 

 Given the values of 𝜆 and 𝜀, the stability condition is that the value 

of 𝐺(𝛽, 𝑖) must be less than one for the whole interval from 0 to 1 of the 

phase angle 𝛽 and all nodes 𝑖. Since the maximum value of 𝐺(𝛽, 𝑖) is 

located at node 𝑖 =  𝑀, if its value is less than one, the stability condition 

was satisfied for all the other nodes. 

 Before finding the stability regions, it was necessary to perform a 

sensitivity analysis of 𝐺(𝛽, 𝑖) with respect to the parameters 𝜆, 𝜀, and 𝑀. 

As can be observed in Equation (19b), 𝐺(𝛽, 𝑖) depends on the parameters 

𝜆 and 𝜀, and the variables are the phase angle (𝛽) and the node number 

𝑖; which for this analysis can be fixed on 𝑖 =  𝑀. The effect of each 

parameter was analyzed as follows; in the first place, 𝜆 is taken as a 

variable with fixed values of 𝜀 = -2 and 𝑀=100; in the second place, 𝜀 is 

taken as a variable with fixed values of 𝜆 =0.5 and 𝑀=100; and in third 

place, 𝑀 is variable and 𝜆 = 0.5 and 𝜀 = -2. The three cases are plotted in 
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Figure 14a, Figure 14b, and Figure 14c, respectively. The coordinate axes 

are the real and the imaginary components of 𝐺(𝛽, 𝑖), and the region of 

stability is painted in yellow. 

 

 

Figure 14. Polar representation of the amplification factor: a) 𝜆 is 

variable; 𝜀 = -2; 𝑀=100; b) 𝜆 = 0.5; 𝜀 is variable; 𝑀 = 100; c) 𝜆 = 0.5; 

𝜀 = -2; 𝑀 is variable. 

 

 In Figure 14a the component for a fixed 𝜆 are circumferences whose 

radius increases with 𝜆, particularly for 𝜆=0.5, it is noted that the 

circumference is centered in the origin of the coordinates and this shows 

that all the points inside the circle have amplification values less than 1. 

Moreover, the circle corresponding to the circumference of the values with 
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𝜆=0.25 is inside the larger circle, which indicates that the region of 

stability of the model is given by all the points inside the circle 

corresponding to a value of 𝜆≤0.50. In addition, for the three cases, the 

center is in the real axis at a distance of the origin equal to 1-2 𝜆. 

 In Figure 14b it can be seen that for the three values of 𝜀 the 

geometrical patterns are ellipses with a longer axis in the imaginary 

component of 𝐺(𝛽, 𝑖) when the 𝜀≤-2 and in the direction of the real 

component for 𝜀≥-2, with a transition at 𝜀=-2 where the figure is a 

circumference. In all cases, the center is located in origin and for 𝜀=-2 

the radius of the circumference is 1, which defines a circle of stability for 

all internal points and therefore all the values of 𝜀≥-2 since all ellipses are 

inside the circle. 

 Finally, taking 𝑀 as a variable the geometrical places in all cases 

are the circumferences centered in the origin and radius that increase with 

the value of 𝑀. However, the increase of the radius decreases 

exponentially as 𝑀 increases. In the three cases, the radius of the circle 

is less than 1, indicating that the method is stable regardless of the value 

of 𝑀. 

 The sensitivity analysis shows that the main parameters affecting 

the value of the amplification factor 𝐺(𝛽, 𝑖) are 𝜆 and 𝜀 and that the effect 

of 𝑀 is negligible. The combined effect on the module of the amplification 

factor of 𝜆 and 𝜀, is shown in Figure 15a, for 𝑀 = 100 nodes, where the 

level curves for three values of the amplification factor are shown; 1, 1.25 

and 1.5, indicating the region of stability for │𝐺│ < 1 in blue and the 
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contours of transition to unstable region. The region of stabil ity shows two 

different behaviors, in the first place, for values of -2 ≤ -𝜀 ≤ -0 the stability 

does not depend on 𝜀 but only on 𝜆 such that the method is stable for 

values 𝜆 ≤ 0.5. 

 

 

Figure 15. a). Maximum values of amplification factor as a function of 

parameters 𝜆 and 𝜀. b). Module of amplification factor versus relative 

phase. 

 

 For values of 𝜀 < -2, the stability depends on both 𝜆 and 𝜀 (line C). 

This would be associated with the above sensitivity analysis in which the 

geometrical places for the real and imaginary components of 𝐺(𝛽, 𝑖) are 

ellipses in which part of the surface area may stay outside the circle of 

stability (Figure 14b). 
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 To continue with the analysis, the values of │𝐺│ were plotted as a 

function of the relative phase (𝛽/𝜋) for four points, which is shown in 

Figure 15a, which are in the limit of stability (maximum │𝐺│ is equal to 

1); A, B, C and D for four specific values of 𝜆 and 𝜀 as indicated in 

Figure 15b. For A with 𝜆=0.5 and 𝜀=-1, │𝐺│ presents two maximum 

points at 𝛽/𝜋=0 and 𝛽/𝜋=1, being the latter the global maximum. For 

point B with 𝜆=0.5 and 𝜀=-2, │𝐺│ has a value of practically 1 and is 

insensitive to the relative phase. For point C with 𝜆=0.25 and 𝜀=-3, │𝐺│ 

lightly increases from 𝛽/𝜋=0 to a maximum value at 𝛽/𝜋~0.2 and then 

sharply decreases. For point D with 𝜆=0.15 and 𝜀=-4, the behavior of │𝐺│ 

with 𝛽/𝜋 is similar as in the case of the point C. 

 From the above analysis, it is possible to develop the following 

general conditions for the stability of the method for solving the Richards 

equation by a finite difference method, which can be seen in the Appendix. 

 For -2 ≤ 𝜀 ≤ 0, from Equation (19b), when the relative phase tends 

to 1 independently of the absolute value of 𝑀. Under this condition in 

Equation (19b), the cosine function tends to -1, and the sine function 

tends to 0. Therefore, the following stability condition was derived: 

 

|1 − 4𝜆 −
𝜀𝜆

𝑀
| ≤ 1         (21) 

 

 Considering that -2≤-𝜀≤-0, Equation (21) was simplified as: 
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0 ≤ 𝜆 ≤
2

4+
𝜀

𝑀

          (22) 

 

 In the case of negligible values of 𝜀/𝑀 that are obtained for low 

values of 𝜀 or large values of 𝑀, Equation (22) can be further simplified 

as follows, and consistently with curve A in Figure 15a : 

 

0 ≤ 𝜆 ≤
1

2
  (23) 

 

 For the region with a transition given by curve C, in Figure 15a, that 

is values of 𝜀 ≤-2 and shown in Figure 15b for point C, it was observed 

that the maximum occurs for a relative phase of 𝛽/𝜋 ≈ 0.2 rather than 

𝛽/𝜋 ≈ 1, which makes difficult the derivation of a specific relation for the 

lower limit of the convergence or stability region of Figure 15a. 

 

 

Conclusions 
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In this work, we proposed an explicit finite difference-based method to 

solve the Richards equation, which formulation employs both, the degree 

of saturation and the matric potential. The algorithm profits form the 

problem structure to reduce the problem size and consequently, the CPU 

time. The model was validated by using a case study from the literature, 

resulting in an excellent agreement. 

 Since explicit methods present inherently a convergence threshold 

that depends on the simulation parameters, 𝛥𝑡, and 𝛥𝑧, we developed an 

algebraic linearization that was capable of predicting accurately the 

stability limits. We applied the Fourier transform analysis to the linearized 

equations to determine if the simulation was stable. Finally, we expand 

the stability analysis beyond the case study, performing a sensibility 

analysis and establishing the stability conditions for a general case. 

 

 

Appendix A: Derivation of Equation (19b) 

 

 

From the linear approximation of the model (18), the function 𝑎𝑖
𝑗
 was 

approached by using the Fourier series, as it is shown in Equation (A.1), 
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Equation (A.2), Equation (A.3), and Equation (A.4), where 𝑘𝑚 is defined 

in Equation (A.5): 

 

𝑎𝑖
𝑗+1 = 𝑎𝑖

𝑗 +
𝜆

𝑖
(𝑎𝑖+1

𝑗 (𝑖 + 1) − 2𝑎𝑖
𝑗 𝑖 + 𝑎𝑖−1

𝑗 (𝑖 − 1) + 0.5𝜀 (𝑎𝑖+1
𝑗 (𝑖 + 1) − 𝑎𝑖−1

𝑗 (𝑖 − 1)))

 (18) 

 

𝑎𝑖
𝑗 = 𝑏𝑚(𝑗)𝑒𝐼∙𝑘𝑚 ∙𝑖∙∆𝑧         (A.1) 

 

𝑎𝑖
𝑗+1

= 𝑏𝑚(𝑗 + 1)𝑒𝐼∙𝑘𝑚 ∙𝑖∙∆𝑧        (A.2) 

 

𝑎𝑖−1
𝑗

= 𝑏𝑚(𝑗)𝑒𝐼∙𝑘𝑚(𝑖−1)∆𝑧        (A.3) 

 

𝑎𝑖+1
𝑗

= 𝑏𝑚(𝑗)𝑒𝐼∙𝑘𝑚 ∙(𝑖+1)∆𝑧        (A.4) 

 

𝑘𝑚 =
𝑚∙𝜋

𝑀∙∆𝑧
          (A.5) 

 

where 𝑚=0, 1, 2…𝑀. 
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 Introducing Equation (A.1), Equation (A.2), Equation (A.3), and 

Equation (A.4), in the linear approximation of the model (18), it is 

possible to write the following expression: 

 

𝑏𝑚 (𝑗 + 1)𝑒𝐼∙𝑘𝑚 ∙𝑖∙∆𝑧 = 𝑏𝑚 (𝑗) 𝑒𝐼∙𝑘𝑚∙𝑖∙∆𝑧 + 𝑏𝑚(𝑗) 𝑒𝐼∙𝑘𝑚∙𝑖∙∆𝑧 ∙
𝜆

𝑖
∙ (−2 𝑖 + 𝑖 (𝑒𝐼∙𝑘𝑚∙∆𝑧 +

𝑒−𝐼∙𝑘𝑚∙∆𝑧) + (𝑒𝐼∙𝑘𝑚 ∙∆𝑧 − 𝑒−𝐼∙𝑘𝑚 ∙∆𝑧) + 0.5 𝜀 (𝑖 (𝑒𝐼∙𝑘𝑚∙∆𝑧 − 𝑒−𝐼∙𝑘𝑚∙∆𝑧) + (𝑒𝐼∙𝑘𝑚∙∆𝑧 +

𝑒−𝐼∙𝑘𝑚∙∆𝑧)))          (A.6) 

 

 Now applying the above Equation (A.6) on the definition of 𝐺(𝛽, 𝑖) 

given by the Equation (19a), applying the Euler identity, it was obtained 

the following expression: 

 

𝐺(𝛽, 𝑖) = 1 +
𝜆

𝑖
(−2𝑖 + 𝑖(2𝑐𝑜𝑠(𝑘𝑚∆𝑧)) + (2𝐼𝑠𝑖𝑛(𝑘𝑚∆𝑧)) + 0.5𝜀 (𝑖(2𝐼𝑠𝑖𝑛(𝑘𝑚∆𝑧)) +

(2𝑐𝑜𝑠(𝑘𝑚∆𝑧))))         (A.7) 

 

 Doing the necessary simplifications and algebraic operations and 

considering that 𝑘𝑚 ∆𝑧 = 𝛽, it was obtained the expression (19b), shown 

below: 
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𝐺(𝛽, 𝑖) = 1 + 𝜆 (−2 + (2 +
𝜀

𝑖
) 𝑐𝑜𝑠(𝛽)) + 𝜆 (

2

𝑖
+ 𝜀) 𝐼 𝑠𝑖𝑛(𝛽)   (19b) 

 

 

Appendix B: The condition of stability for -2 ≤ -ε 

≤ -0 

 

 

Performing analysis for the extreme critical case (relative phase is one), 

giving by the Equation (21), the Equation (B.1) and Equation (B.2) are 

written and analyzed below: 

 

If 
𝛽

𝜋
= 1 and 𝐺(𝛽, 𝑖)  ≤  1 |1 − 4𝜆 −

𝜀∙𝜆

𝑀
| ≤ 1      (21) 

 

1 − 4𝜆 −
𝜀∙𝜆

𝑀
≤ 1         (B.1) 

 

1 − 4𝜆 −
𝜀∙𝜆

𝑀
≥ −1         (B.2) 
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 Rearranging Equation (B.1), was obtained Equation (B.3), which 

could be simplified as Equation (B.4): 

 

−𝜀∙𝜆

𝑀
≤ 4𝜆          (B.3) 

 

𝜀 ≥ −4𝑀          (B.4) 

 

 On the other hand, Equation (B.2), follows Equation (B.5): 

 

𝜆 (−4 −
𝜀

𝑀
) ≥ −2         (B.5) 

 

 Equation (B.4) implies that the left member of (B.5) must be 

negative since 𝜆 is a positive parameter (see Equation  (16)); thus it 

follows the convergence condition (23): 

 

𝜆 ≤
2

4+
𝜀

𝑀

          (22) 

 

 Then, Equation (22) together with equation (B.4) are 

mathematically sufficient conditions to satisfy Equation (21). 
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 On the other hand, Equation (22) depends on 𝑀 (maximum number 

of nodes) and 𝜀, and it was more restrictive in deeper nodes due to the 

fact that 𝜀 is a negative parameter (see Equation  (17)). However, a clear 

trend is presented in (22), when the number of nodes increases, and it 

tends to infinity, in that case, could be obtained Equation (23). 

 

𝜆 ≤
1

2
           (23) 
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